
ptg16315837

From the Library of wu yuan

ptg16315837

Swift Programming: The Big Nerd Ranch Guide
by Matthew Mathias and John Gallagher

Copyright © 2015 Big Nerd Ranch, LLC

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch, LLC
200 Arizona Ave NE
Atlanta, GA 30307
(770) 817-6373
http://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, LLC.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0134398041
ISBN-13 978-0134398044

First edition, first printing, December 2015
Release D.1.1.1

From the Library of wu yuan

http://www.bignerdranch.com/
http://www.informit.com

ptg16315837

iii

Dedication
For my wife, who is smart, strong, and virtuous. And for my family, who has given me
every opportunity to live a good life.

— M.M.

For my wife and best friend; you are “s’wonderful.” And for my daughters, who
bring me joy every day.

— J.G.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

v

Acknowledgments
We received a lot of help in writing this book. Without it, this book would not be what it is, and it may
have never even happened. Thanks are due.

First, we need to say thank you to our colleagues at Big Nerd Ranch. Thank you to Aaron Hillegass
for providing us with the opportunity to write this book. It has been immensely gratifying to learn and
teach Swift. Big Nerd Ranch provided us with the time and space to work on this project. We hope that
this book lives up to the trust and the support that we have received.

Particular thanks are also due to our colleagues in the Cocoa Pod at Big Nerd Ranch. Your careful
teaching revealed many bugs in the text, and your thoughtful recommendations led to many
improvements in our approach. Those of you who are not instructors helped to review the materials,
vetted our approach, and provided countless suggestions that we never thought of. It is truly wonderful
to have colleagues such as you. Thank you Pouria Almassi, Matt Bezark, Nate Chandler, Step
Christopher, Kynerd Coleman, Matthew Compton, Joseph Dixon, Robert Edwards, Sean Farrell, Brian
Hardy, Florian Harr, Tom Harrington, Bolot Kerimbaev, Christian Keur, JJ Manton, Bill Monk, Chris
Morris, Adam Preble, Scott Richie, Jeremy Sherman, Steve Sparks, Rod Strougo, TJ Usiyan, Zach
Waldowski, Thomas Ward, and Mike Zornek.

Our colleagues in operations and sales are instrumental. Classes would literally never be scheduled
without their work. Thank you Shannon Coburn, Nicole Rej, Heather Brown, Tasha Schroader, Mat
Jackson, and Chris Kirksey for all of your hard work. We cannot do what you do.

Second, we need to acknowledge the many talented folks who worked on the book with us.

Elizabeth Holaday, our editor, helped refine the book, crystallize its strengths, and diminish its
weaknesses.

Simone Payment, our copy-editor, found and corrected errors and ultimately made us look smarter than
we are.

Ellie Volckhausen designed our cover; that skateboard looks pretty rad.

Chris Loper designed and produced the print book and the EPUB and Kindle versions.

Finally, thank you to our students. We learned with you and for you. Teaching is part of the greatest
thing that we do, and it has been a pleasure working with you. We hope that the quality of this book
matches your enthusiasm and determination.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

vii

Table of Contents
Introduction .. xv

Learning Swift .. xv
Whither Objective-C? ... xv
Prerequisites ... xv
How This Book Is Organized ... xvi
How to Use This Book .. xvi
Challenges .. xvii
For the More Curious ... xvii
Typographical Conventions .. xvii
Necessary Hardware and Software ... xviii
Before We Begin .. xviii

I. Getting Started .. 1
1. Getting Started .. 3

Getting Started with Xcode ... 3
Playing in a Playground ... 6
Varying Variables and Printing to the Console .. 7
You Are On Your Way! .. 9
Bronze Challenge .. 9

2. Types, Constants, and Variables .. 11
Types ... 11
Constants vs. Variables ... 13
String Interpolation .. 14
Bronze Challenge .. 15

II. The Basics ... 17
3. Conditionals .. 19

if/else .. 19
Ternary Operator ... 22
Nested ifs ... 23
else if .. 24
Bronze Challenge .. 24

4. Numbers ... 25
Integers .. 25
Creating Integer Instances ... 27
Operations on Integers .. 28

Integer division ... 29
Operator shorthand .. 30
Overflow operators .. 30

Converting Between Integer Types .. 32
Floating-Point Numbers .. 33
Bronze Challenge .. 34

5. Switch .. 35
What Is a Switch? ... 35
Switch It Up ... 36

Ranges ... 39
Value binding .. 40

From the Library of wu yuan

ptg16315837

Swift Programming

viii

where clauses .. 41
Tuples and pattern matching .. 42

switch vs. if/else .. 45
Bronze Challenge .. 46

6. Loops ... 47
for-in Loops ... 47

for case .. 50
A Quick Note on Type Inference .. 51
for Loops ... 51
while Loops .. 52
repeat-while Loops .. 53
Control Transfer Statements, Redux .. 54
Bronze Challenge .. 56

7. Strings ... 57
Working with Strings ... 57
Unicode ... 59

Unicode scalars ... 59
Canonical equivalence .. 61

Silver Challenge .. 63
8. Optionals .. 65

Optional Types .. 65
Optional Binding ... 67
Implicitly Unwrapped Optionals ... 69
Optional Chaining .. 70
Modifying an Optional in Place ... 71
The Nil Coalescing Operator ... 71
Silver Challenge .. 72

III. Collections and Functions .. 73
9. Arrays .. 75

Creating an Array .. 75
Accessing and Modifying Arrays ... 77
Array Equality .. 83
Immutable Arrays .. 84
Documentation .. 85
Bronze Challenge .. 86
Silver Challenge .. 86

10. Dictionaries ... 87
Creating a Dictionary ... 87
Populating a Dictionary .. 88
Accessing and Modifying a Dictionary .. 88
Adding and Removing Values .. 90
Looping ... 92
Immutable Dictionaries ... 93
Translating a Dictionary to an Array ... 93
Silver Challenge .. 94

11. Sets .. 95
What Is a Set? .. 95
Getting a Set .. 95

From the Library of wu yuan

ptg16315837

Swift Programming

ix

Working with Sets ... 97
Unions ... 97
Intersects .. 98
Disjoint .. 99

Bronze Challenge ... 100
Silver Challenge .. 100

12. Functions .. 101
A Basic Function ... 101
Function Parameters ... 102

Parameter names .. 103
Variadic parameters .. 104
Default parameter values ... 105
In-out parameters ... 106

Returning from a Function .. 107
Nested Functions and Scope .. 108
Multiple Returns .. 108
Optional Return Types .. 110
Exiting Early from a Function .. 111
Function Types .. 111
Bronze Challenge ... 112
Silver Challenge .. 112

13. Closures .. 113
Closure Syntax .. 113
Closure Expression Syntax .. 115
Functions as Return Types ... 117
Functions as Arguments .. 118
Closures Capture Values .. 121
Closures Are Reference Types .. 122
Functional Programming ... 123

Higher-order functions .. 123
Gold Challenge .. 126

IV. Enumerations, Structures, and Classes .. 127
14. Enumerations ... 129

Basic Enumerations .. 129
Raw Value Enumerations .. 132
Methods ... 135
Associated Values .. 138
Recursive Enumerations .. 141
Bronze Challenge ... 144
Silver Challenge .. 144

15. Structs and Classes ... 145
A New Project .. 145
Structures ... 150
Instance Methods ... 153

Mutating methods .. 154
Classes ... 155

A monster class ... 155
Inheritance .. 156

From the Library of wu yuan

ptg16315837

Swift Programming

x

Method Parameter Names .. 160
What Should I Use? ... 160
Bronze Challenge ... 161
Silver Challenge .. 161
For the More Curious: Type Methods .. 162
For the More Curious: Function Currying .. 163

16. Properties .. 169
Basic Stored Properties ... 169
Nested Types ... 170
Lazy Stored Properties .. 171
Computed Properties .. 174

A getter and a setter ... 175
Property Observers ... 176
Type Properties .. 177
Access Control .. 180

Controlling getter and setter visibility .. 182
Bronze Challenge ... 183
Silver Challenge .. 183
Gold Challenge .. 183

17. Initialization ... 185
Initializer Syntax .. 185
Struct Initialization ... 186

Default initializers for structs ... 186
Custom initializers for structs ... 187

Class Initialization ... 191
Default initializers for classes .. 191
Initialization and class inheritance ... 192
Required initializers for classes .. 199
Deinitialization .. 200

Failable Initializers ... 201
A failable Town initializer ... 201
Failable initializers in classes ... 204

Initialization Going Forward .. 205
Silver Challenge .. 205
Gold Challenge .. 205
For the More Curious: Initializer Parameters ... 206

18. Value vs. Reference Types .. 207
Value Semantics .. 207
Reference Semantics ... 209
Constant Value and Reference Types ... 212
Using Value and Reference Types Together .. 214

Immutable reference types ... 215
Copying ... 216
Identity vs. Equality ... 218
What Should I Use? ... 219

V. Advanced Swift ... 221
19. Protocols ... 223

Formatting a Table of Data .. 223

From the Library of wu yuan

ptg16315837

Swift Programming

xi

Protocols .. 229
Protocol Conformance .. 232
Protocol Inheritance ... 233
Protocol Composition ... 234
Mutating Methods .. 235
Silver Challenge .. 236
Gold Challenge .. 236

20. Error Handling ... 237
Classes of Errors ... 237
Lexing an Input String .. 238
Catching Errors ... 246
Parsing the Token Array ... 248
Handling Errors by Sticking Your Head in the Sand ... 252
Swift Error Handling Philosophy .. 254
Bronze Challenge ... 256
Silver Challenge .. 256
Gold Challenge .. 256

21. Extensions ... 257
Extending an Existing Type ... 257
Extending Your Own Type .. 259

Use extensions to add protocol conformance ... 259
Adding an initializer with an extension .. 260
Nested types and extensions .. 261
Extensions with functions .. 263

Bronze Challenge ... 264
Bronze Challenge ... 264
Silver Challenge .. 264

22. Generics .. 265
Generic Data Structures .. 265
Generic Functions and Methods ... 267
Type Constraints .. 270
Associated Type Protocols ... 271
Type Constraint where Clauses ... 274
Bronze Challenge ... 276
Silver Challenge .. 276
Gold Challenge .. 276
For the More Curious: Understanding Optionals .. 276
For the More Curious: Parametric Polymorphism .. 277

23. Protocol Extensions ... 279
Modeling Exercise ... 279
Extending ExerciseType .. 281
Protocol Extension where Clauses ... 282
Default Implementations with Protocol Extensions ... 283
Naming Things: A Cautionary Tale ... 286
Bronze Challenge ... 288
Gold Challenge .. 288

24. Memory Management and ARC .. 289
Memory Allocation .. 289

From the Library of wu yuan

ptg16315837

Swift Programming

xii

Strong Reference Cycles ... 290
Reference Cycles in Closures ... 295
Bronze Challenge ... 298
Silver Challenge .. 298
For the More Curious: Can I Retrieve the Reference Count of an Instance? 299

25. Equatable and Comparable ... 301
Conforming to Equatable .. 301
Conforming to Comparable ... 304
Comparable’s Inheritance .. 307
Bronze Challenge ... 307
Gold Challenge .. 307
Platinum Challenge .. 308
For the More Curious: Custom Operators ... 308

VI. Event-Driven Applications ... 311
26. Your First Cocoa Application ... 313

Getting Started with VocalTextEdit ... 315
Model-View-Controller ... 317
Setting Up the View Controller .. 318
Setting Up Views in Interface Builder ... 320

Adding the Speak and Stop buttons ... 322
Adding the text view .. 323
Auto Layout .. 326

Making Connections ... 329
Setting target-action pairs for VocalTextEdit’s buttons 329
Connecting the text view outlet .. 330

Making VocalTextEdit… Vocal ... 331
Saving and Loading Documents ... 334

Type casting .. 337
Saving documents .. 337
Loading documents .. 339
MVC cleanup .. 342

Silver Challenge .. 344
Gold Challenge .. 344

27. Your First iOS Application ... 345
Getting Started with iTahDoodle ... 346
Laying Out the User Interface .. 348

Wiring up your interface ... 358
Modeling a To-Do List ... 360
Setting Up the UITableView .. 365
Saving and Loading TodoList ... 367

Saving TodoList ... 367
Loading TodoList ... 369

Bronze Challenge ... 370
Silver Challenge .. 370
Gold Challenge .. 370

28. Interoperability ... 371
An Objective-C Project ... 371

Creating a contacts app ... 374

From the Library of wu yuan

ptg16315837

Swift Programming

xiii

Adding Swift to an Objective-C Project ... 382
Adding contacts ... 386

Adding an Objective-C Class ... 396
Silver Challenge .. 402
Gold Challenge .. 402

29. Conclusion .. 403
Where to Go from Here? .. 403
Shameless Plugs .. 403
An Invitation ... 403

Index ... 405

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

xv

Introduction
Learning Swift
Apple’s World Wide Developers Conference is an annual landmark event for its developer community.
It is a big deal every year, but 2014 was particularly special: Apple introduced an entirely new
language called Swift for the development of iOS and OS X applications.

As a new language, Swift represents a fairly dramatic shift for Mac OS X and iOS developers.
More experienced iOS developers have something new to learn, and new developers cannot rely on
a venerable community for tried and true answers and patterns. Naturally, this shift creates some
uncertainty.

But this is also an exciting time to be a Mac OS X and iOS developer. There is a lot to learn in a new
language, and this is especially true for Swift. The language has evolved quite a bit since its beta
release in the summer of 2014, and it continues to evolve.

We are all at the forefront of this language’s development. As new features are added to Swift, its users
can collaboratively determine its best practices. You can directly contribute to this conversation, and
your work with this book will start you on your way to becoming a contributing member of the Swift
community.

Whither Objective-C?
So, what about Objective-C, Apple’s previous lingua franca for its platforms? Do you still need to
know that language? For the time being, we think that answer is an unequivocal “Yes.” Apple’s Cocoa
library, which you will use extensively, is written in Objective-C, so debugging will be easier if you
understand that language. Moreover, most learning materials and existing Mac and iOS apps are
written in Objective-C. Indeed, Apple has made it easy, and sometimes preferable, to mix and match
Objective-C with Swift in the same project. As an iOS or Mac developer, you are bound to encounter
Objective-C, so it makes sense to be familiar with the language.

But do you need to know Objective-C to learn Swift? Not at all. Swift coexists and interoperates with
Objective-C, but it is its own language. If you do not know Objective-C, it will not hinder you in
learning Swift. (We will only use Objective-C directly in one chapter toward the end of this book, and
even then it will not be important for you to understand the language.)

Prerequisites
We have written this book for all types of iOS and Mac OS X developers, from platform experts to
first-timers. For readers just starting software development, we will highlight and implement best
practices for Swift and programming in general. Our strategy is to teach you the fundamentals of
programming while learning Swift. For more experienced developers, we believe this book will
serve as a helpful introduction to your platform’s new language. So while having some development
experience will be helpful, we do not believe that it is necessary in order to have a good experience
with this book.

We have also written this book with numerous examples so that you can refer to it in the future. Instead
of focusing on abstract concepts and theory, we have written in favor of the practical. Our approach

From the Library of wu yuan

ptg16315837

Introduction

xvi

favors using concrete examples to unpack the more difficult ideas and also to expose the best practices
that make code more fun to write, more readable, and easier to maintain.

How This Book Is Organized
This book is organized in six parts. Each is designed to accomplish a specific set of goals that build on
each other. By the end of the book, you will have built your knowledge of Swift from that of a beginner
to a more advanced developer.

Getting Started This part of the book focuses on the tools that you will need
to write Swift code and introduces Swift’s syntax.

The Basics The Basics introduces the fundamental data types that you
will use every day as a Swift developer. This part of the book
also covers Swift’s control flow features that will help you to
control the order in which your code executes.

Collections and Functions You will often want to gather related data in your application.
Once you do, you will want to operate on that data. Swift
offers collections and functions to help with these tasks.

Enumerations, Structures, and
Classes

This part of the book covers how you will model your data
in your own development. We cover the differences between
these types and make some recommendations on when to use
each.

Advanced Swift As a modern language, Swift provides a number of more
advanced features that enable you to write elegant, readable,
and effective code. This part of the book discusses how to use
these elements of Swift to write idiomatic code that will set
you apart from more casual Swift developers.

Event-Driven Applications This part of the book walks you through writing your first
Mac OS X and iOS applications. For readers working with
older Mac OS X or iOS applications, we conclude this part
of the book by discussing how to interoperate between
Objective-C and Swift.

How to Use This Book
Programming can be tough, and this book is here to make it easier. How can we help you with that?
Follow these steps:

• Read the book. Really! Do not just browse it nightly before going to bed.

• Type out the examples as you read along. Part of learning is muscle memory. If your fingers know
where to go and what to type without too much thought on your part, then you are on your way to
becoming a more effective developer.

From the Library of wu yuan

ptg16315837

Challenges

xvii

• Make mistakes! In our experience, the best way to learn how things work is to first figure out what
makes them not work. Break our code examples and then make them work again.

• Experiment as your imagination sees fit. Whether that means tinkering with the code you find in
the book or going off in your own direction, the sooner you start solving your own problems with
Swift, the faster you will become a better developer.

• Do the challenges we have included in most chapters. As we mentioned, it is important to begin
solving problems with Swift as soon as possible. Doing so will help you to start thinking like a
developer.

More experienced developers may not need to go through some of the earlier parts of the book. Getting
Started and The Basics may be very familiar to some developers.

One caveat: In The Basics, do not skip the chapter on Optionals as they are at the heart of Swift, and in
many ways they define what is unique about the language.

Subsequent chapters like Arrays, Dictionaries, Functions, Enumerations, and Structs and Classes
may seem like they will not present anything new to the practiced developer, but we feel that Swift’s
approach to these topics is unique enough that every reader should at least skim these chapters.

Last, remember that learning new things takes time. Dedicate some time to going through this book
when you are able to avoid distractions. You will get more out of the text if you can.

Challenges
Many of the chapters conclude with an exercise for you to work through on your own. These are
an excellent opportunity for you to challenge yourself. In our experience, truly deep learning is
accomplished when you solve problems in your own way.

For the More Curious
Relatedly, we include sections entitled “For the More Curious” at the end of many chapters. These
sections address questions that may have occurred to the curious reader working through the chapter.
Sometimes, we discuss how a given language feature’s underlying mechanics work, or we may explore
a programming concept not quite related to the heart of the chapter.

Typographical Conventions
You will be writing a lot of code as you work through this book. To make things easier, we use a
couple of conventions to identify what text is old, what should be added, and what should be removed.
For example, in the function implementation below, you are deleting the text print("Hello") and
adding print("Goodbye").

func talkToMe() {
 print("Hello")
 print("Goodbye")
}

From the Library of wu yuan

ptg16315837

Introduction

xviii

Necessary Hardware and Software
To build and run the applications in this book, you will need a Mac running OS X Yosemite (10.10) or
newer. You will also need to install Xcode, Apple’s integrated development environment (IDE), which
is available on the App Store. Xcode includes the Swift compiler as well as other development tools
you will use throughout the book.

Swift is still under rapid development. This book is written for Swift 2.0 and Xcode 7.0. Many of the
examples will not work as written if you are using an older version of Xcode. If you are using a newer
version of Xcode, it is possible there may have been changes in the language that will cause some
examples to fail.

As this book is moving into the printing process, Xcode 7.1 Beta is available. The code samples in
the book work with the latest beta version we have been able to use. If future versions of Xcode do
cause problems, take heart – the vast majority of what you learn will continue to be applicable to future
versions of Swift even though there may be changes in syntax or names. You can also check out our
forums at http://forums.bignerdranch.com for help.

Before We Begin
We hope to show you how much fun it can be to make applications for the Apple ecosystem. While
writing code can be extremely frustrating, it can also be gratifying. There is something magical and
exhilarating about solving a problem, not to mention the special joy that comes out of making an app
that helps people and brings them happiness.

The best way to improve at anything is with practice. If you want to be a developer, then let’s get
started! If you find that you do not think you are very good at it, who cares? Keep at it and we are sure
that you will surprise yourself. Your next steps lie ahead. Onward!

From the Library of wu yuan

http://forums.bignerdranch.com

ptg16315837

Part I
Getting Started

This part of the book introduces the toolchain for writing Swift code. It introduces Xcode as the Swift
developer’s primary development tool and uses playgrounds to provide a lightweight environment for
trying out code. These initial chapters will also help you become familiar with some of Swift’s most
basic concepts, like constants and variables, which will set the stage for the rest of the book and a
deeper understanding of the language.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

3

1
Getting Started

In this chapter, you will get your environment set up and take a small tour of some of the tools you
will use every day as an iOS and Mac developer. Additionally, you will get your hands dirty with some
code to get better acquainted with Swift and Xcode.

Getting Started with Xcode
If you have not already done so, download and install Xcode, available in the App Store. Make sure to
download Xcode 7 or higher.

Once you have Xcode installed, launch it. The welcome screen gives you several options, including Get
started with a playground and Create a new Xcode project (Figure 1.1).

Figure 1.1 Starting with a playground

From the Library of wu yuan

ptg16315837

Chapter 1 Getting Started

4

Playgrounds are a new feature released in Xcode 6. They are an interactive environment for rapidly
developing and evaluating Swift code. A playground does not require that you compile and run a
complete project. Instead, playgrounds evaluate your Swift code on the fly, so they are ideal for
testing and experimenting with the Swift language in a lightweight environment. You will be using
playgrounds frequently throughout this book to get quick feedback on your Swift code.

In addition to playgrounds, you will create native command-line tools. Why not just use playgrounds?
You would miss out on a lot of Xcode’s features and would not get as much exposure to the IDE. You
will be spending a lot of time in Xcode, and it is good to get comfortable with it as soon as possible.

From the welcome screen, select Get started with a playground.

Next, name your playground MyPlayground. When asked to choose a platform (OS X or iOS), select
OS X, even if you are an iOS developer (Figure 1.2). The Swift features you will be covering are
common to both platforms. Click Next.

Figure 1.2 Naming a playground

From the Library of wu yuan

ptg16315837

Getting Started with Xcode

5

Finally, you are prompted to save your playground. As you work through this book, it is a good idea to
put all of your work in one folder. Choose a location that works for you and click Create (Figure 1.3).

Figure 1.3 Saving a playground

From the Library of wu yuan

ptg16315837

Chapter 1 Getting Started

6

Playing in a Playground
As you can see in Figure 1.4, a Swift playground opens with two sections. On the left, you have the
Swift code editor. On the right, you have the results sidebar. The code in the editor is evaluated and
run, if possible, every time the source changes. The results of the code are displayed in the results
sidebar.

Figure 1.4 Your new playground

Let’s take a look at your new playground. Notice that the first line of text is green and that it begins
with two forward slashes: //. The slashes signify to the compiler that the line is a comment, and Xcode
shows comments in green.

Developers use comments as inline documentation or for notes to help keep track of what happens
where. Delete the forward slashes. The compiler will issue an error complaining that it cannot parse the
expression. Add the slashes back by using the handy keyboard shortcut Command-/.

Just below the comment, the playground imports the Cocoa framework. This import statement means
that your playground has complete access to all of the application programming interfaces (APIs) in
the Cocoa framework. (An API is similar to a prescription – or set of definitions – for how a program
can be written.)

Below the import statement is a line that reads: var str = "Hello, playground". The text in quotes
is copied on the right, in the results sidebar: “Hello, playground.” Let’s take a closer look at that line of
code.

On the lefthand side of the equals sign, you have the text var str. Swift’s keyword var is used to
declare a variable. This is an important concept that you will see in greater detail in the next chapter.
For now, a variable represents some value that you expect to change or vary.

On the righthand side of the equality, you have "Hello, playground". In Swift, the quotation marks
indicate a String, an ordered collection of characters. The template named this new variable str, but
variables can be named almost anything. (There are limitations, of course. Try to change the name str
to be var. What happens? Why do you think you cannot name your variable var? Be sure to change the
name back to str before moving on.)

From the Library of wu yuan

ptg16315837

Varying Variables and Printing to the Console

7

Now you can understand the text printed on the right in the results sidebar: it is the string value
assigned to the variable str.

Varying Variables and Printing to the Console
String is a type, and we say that the str variable is “an instance of the String type.” Types describe
a particular structure for representing data. Swift has many types, which you will meet throughout this
book. Each type has specific abilities – what the type can do with that data – and limitations – what it
cannot do with the data. For example, the String type is designed to work with an ordered collection
of characters and defines a number of functions to work with that ordered collection of characters.

Recall that str is a variable. That means you can change the variable’s value. Let’s append an
exclamation point to the end of the string to make it a well-punctuated sentence. (Whenever new code
is added in this book, it will be shown in bold. Deletions will be struck through.)

Listing 1.1 Proper punctuation
import Cocoa

var str = "Hello, playground"

str += "!"

To add the exclamation point, you are using the += addition assignment operator. The addition
assignment operator combines the addition (+) and assignment (=) operations in a single operator. (You
will see more details on operators in Chapter 3.)

Did you notice anything in the results sidebar on the right? You should see a new line of results
representing str’s new value, complete with exclamation point (Figure 1.5).

Figure 1.5 Varying str

From the Library of wu yuan

ptg16315837

Chapter 1 Getting Started

8

Next, add some code to print the value held by the variable str to the console. In Xcode, the console
displays text messages that you create and want to log as things occur in your program. Xcode also
uses the console to display warnings and errors as they occur.

To print to the console, you are going to use the function print(). Functions are groupings of related
code that send instructions to the computer to complete a specific task. print() is a function used to
print a value to the console followed by a line break. Unlike playgrounds, Xcode projects do not have
a results sidebar, so you will use the print() function frequently when you are writing fully featured
apps. The console is useful for checking the current value of some variable of interest.

Listing 1.2 Printing to the console
import Cocoa

var str = "Hello, playground"

str += "!"
print(str)

Currently, the playground is not showing your console. You need to open the Debug Area to see it.
Click on View → Debug Area → Show Debug Area (Figure 1.6). (Notice the keyboard shortcut next to
this last step? You can also type Shift-Command-Y on your keyboard to open the Debug Area.)

Figure 1.6 Showing the Debug Area

From the Library of wu yuan

ptg16315837

You Are On Your Way!

9

Now that you have your Debug Area open, you should see something like Figure 1.7.

Figure 1.7 Your first Swift code

You Are On Your Way!
Let’s review what you have accomplished so far. You have:

• installed Xcode

• created and got acquainted with a playground

• used a variable and modified it

• learned about the String type

• used a function to print to the console

That is good! You will be making your own apps in no time. Until then, stick with it. As you continue,
you will see that most everything in this book is merely a variation on the themes you have covered
thus far.

Bronze Challenge
Many of the chapters in this book end with one or more challenges. The challenges are for you to work
through on your own to deepen your understanding of Swift and get a little extra experience. Your first
challenge is below. Before you get started, create a new playground.

You learned about the String type and printing to the console using print(). Use your new
playground to create a new instance of the String type. Set the value of this instance to be equal to
your last name. Print its value to the console.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

11

2
Types, Constants, and Variables

This chapter will introduce you to constants, variables, and Swift’s basic data types. These elements are
the fundamental building blocks of any program. You will use constants and variables to store values
and to pass data around in your applications. Types describe the nature of the data held by the constant
or variable. There are important differences between constants and variables, as well as each of the data
types, that shape their uses.

Types
Variables and constants have a data type. The type describes the nature of the data and provides
information to the compiler on how to handle the data. Based on the type of a constant or variable,
the compiler knows how much memory to reserve and will also be able to help with type checking, a
feature of Swift that helps to prevent you from assigning the wrong kind of data to a variable.

Let’s see this in action. Create a new OS X playground. (From the welcome screen, choose Get started
with a playground. From within Xcode, choose File → New → Playground... .) Name the playground
Variables.

Suppose you want to model a small town in your code. You might want a variable for the number of
stoplights in the town. Create a variable called numberOfStoplights and give it a value.

Listing 2.1 Assigning a string to a variable
import Cocoa

var numberOfStoplights = "Four"

Here, you have assigned an instance of the String type to the variable called numberOfStoplights.
Let’s go piece by piece to see why this is so. The equality (=) assigns the value on its right side to
whatever is on its left side. Swift uses type inference to determine the data type of your variable. In this
case, the compiler knows the variable numberOfStoplights is of the String type because the value on
the right side of the equality is an instance of String. Why is "Four" an instance of the String type?
Because the quotation marks indicate that it is a String literal.

From the Library of wu yuan

ptg16315837

Chapter 2 Types, Constants, and Variables

12

Now add the integer 2 to your variable, using += as you did in the last chapter.

Listing 2.2 Adding “Four” and 2
import Cocoa

var numberOfStoplights = "Four"
numberOfStoplights += 2

The compiler gives you an error telling you that this operation does not make sense. You get this error
because you are trying to add a number to a variable that is an instance of a different type: String.
What does it mean to add the number 2 to a string? Does it double the string and give you “FourFour”?
Does it put “2” on the end and give you “Four2”? Nobody knows. It just does not make sense to add a
number to an instance of String.

If you are thinking that it does not make sense to have numberOfStoplights be of type String in the
first place, you are right. Because this variable represents the number of stoplights in your theoretical
town, it makes sense to use a numerical type. Swift provides an Int type that is perfect for your
variable. Change your code to use Int instead. (Remember that code you are to delete is shown struck
through.)

Listing 2.3 Using a numerical type
import Cocoa

var numberOfStoplights = "Four"
var numberOfStoplights: Int = 4
numberOfStoplights += 2

Let’s take a look at the changes here. Before, the compiler had to rely on type inference to determine
the data type of the variable numberofStoplights. Now, you are explicitly declaring the variable to
be of the Int type using Swift’s type annotation syntax. The colon in the code above represents “… of
type …,” so the code could be read as: “Declare a variable called numberOfStoplights of type Int that
starts out with a value of 4.”

Note that type annotation does not mean that the compiler is no longer paying attention to what is on
each side of the equality. If, for example, you tried to reassign your previous String instance of "Four"
to be an integer using type annotation, the compiler would give you a warning telling you that it cannot
convert a string to an integer.

Notice something else about the new code you have entered: your error has disappeared. It is perfectly
fine to add 2 to the integer variable representing your town’s number of stoplights. In fact, because you
have declared this instance to be a variable, this operation is perfectly natural. You will return to this
issue later on in the chapter.

Swift has a host of frequently used data types. You will learn more about strings, which contain textual
data, in Chapter 7 and numbers in Chapter 4. Other commonly used types are the various collection
types, which you will see later in the book.

From the Library of wu yuan

ptg16315837

Constants vs. Variables

13

Constants vs. Variables
We said that types describe the nature of the data held by a constant or variable. What, then, are
constants and variables? Up to now, you have only seen variables. Variables’ values can vary, which
means that you can assign them a new value. For example, you varied numberOfStoplights’s value in
this code: numberOfStoplights += 2.

Often, however, you will want to create instances whose values do not change. Use constants for these
cases. As the name indicates, the value of a constant cannot be changed.

You made numberOfStoplights a variable, and you changed its value. But what if you did not want to
vary the value of numberOfStoplights? In that case, making numberOfStoplights constant would be
better. A good rule of thumb is to use variables for instances that must vary, and constants for instances
that will not.

Swift has different syntax for declaring constants and variables. As you have seen, you declare a
variable with var. You use the let keyword to declare that an instance is a constant.

Declare a constant in the current playground to fix the number of stoplights in your small town.

Listing 2.4 Declaring a constant
import Cocoa

var numberOfStoplights: Int = 4
let numberOfStoplights: Int = 4
numberOfStoplights += 2

You declare numberOfStoplights to be a constant via the let keyword. This change makes sense,
considering that the town you are modeling is small; it is not likely to get a new stoplight any time
soon. Unfortunately, this change causes the compiler to issue an error. Why are you seeing this error?

You have just changed numberOfStoplights to be a constant, but you still have code that attempts to
change its value: numberOfStoplights += 2. Since constants cannot change, the compiler gives you
an error when you try to change it. Fix the problem by removing the addition and assignment code.

Listing 2.5 Constants do not vary
import Cocoa

let numberOfStoplights: Int = 4
numberOfStoplights += 2

From the Library of wu yuan

ptg16315837

Chapter 2 Types, Constants, and Variables

14

Now, add an Int to represent the town’s population. (Do you think it should be a variable or a
constant?)

Listing 2.6 Declaring population
import Cocoa

let numberOfStoplights: Int = 4
var population: Int

Your town’s population is likely to vary over time. Thus, you declared population with the var
keyword to make this instance a variable. You also declared population to be an instance of type Int.
You did so because a town’s population is counted in terms of whole persons. But you did not initialize
population with any value. It is therefore an empty Int.

(Initialization, which you will learn more about in Chapter 17, is the operation of setting up an instance
of a type so that it is prepared and available to use.)

Use the assignment operator to give population its starting value.

Listing 2.7 Giving population a value
import Cocoa

let numberOfStoplights: Int = 4
var population: Int
population = 5422

String Interpolation
Every town needs a name. Your town is fairly stable, so it will not be changing its name any time soon.
Make the town name a constant of type String.

Listing 2.8 Giving the town a name
import Cocoa

let numberOfStoplights: Int = 4
var population: Int
population = 5422
let townName: String = "Knowhere"

From the Library of wu yuan

ptg16315837

Bronze Challenge

15

It would be nice to have a short description of the town that the Tourism Council could use. The
description is going to be a constant String, but you will be creating it a bit differently than the
constants and variables you have created so far. The description will include all the data you have
entered, and you are going to create it using a Swift feature called string interpolation.

String interpolation lets you combine constant and variable values into a new string. You can then
assign the string to a new variable or constant, or just print it to the console. You are going to print the
town description to the console.

Listing 2.9 Crafting the town description
import Cocoa

let numberOfStoplights: Int = 4
var population: Int
population = 5422
let townName: String = "Knowhere"
let townDescription =
"\(townName) has a population of \(population) and \(numberOfStoplights) stoplights."
print(townDescription)

The \() syntax represents a placeholder in the String literal that accesses an instance’s value and
places it within the new String. For example, \(townName) accesses the constant townName’s value
and places it within the new String instance.

The result of the new code is shown in Figure 2.1.

Figure 2.1 Knowhere’s short description

Bronze Challenge
Add a new variable to your playground representing Knowhere’s level of unemployment. Which
data type should you use? Give this variable a value and update townDescription to use this new
information.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

Part II
The Basics

Programs execute code in a specific order. Writing software means having control over the order in
which code executes. Programming languages provide control flow statements to help developers
organize the execution of their code. This part of the book introduces the concepts of conditionals and
loops to accomplish this task.

It will also show you how Swift represents numbers and text – often called strings – in code. These
types of data are the building blocks of many applications. By the end of these chapters, you will have
a good understanding of how numbers and strings work in Swift.

Last, this part of the book introduces the concept of optionals in Swift. Optionals play an important
role in the language and provide a mechanism for the language to represent the concept of nothing
safely. As you will see, how Swift deals with optionals highlights the language’s approach to writing
safe and reliable code.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

19

3
Conditionals

In previous chapters your code led a relatively simple life: you declared some simple constants and
variables and then assigned them values. But of course, an application really comes to life – and
programming becomes a bit more challenging – when the application makes decisions based on the
contents of its variables. For example, a game may let players leap a tall building if they have eaten a
power-up. You use conditional statements to help applications make these kind of decisions.

if/else
if/else statements execute code based on a specific logical condition. You have a relatively simple
either/or situation and depending on the result one branch of code or another (but not both) runs.
Consider Knowhere, your small town from the previous chapter, and imagine that you need to buy
stamps. Either Knowhere has a post office or it does not. If it has a post office, you will buy stamps
there. If it does not have a post office, you will need to drive to the next town to buy stamps. Whether
there is a post office is your logical condition. The different behaviors are “get stamps in town” and
“get stamps out of town.”

Some situations are more complex than a binary yes/no. You will see a more flexible mechanism called
switch in Chapter 5. But for now, let’s keep it simple.

Create a new OS X playground and name it Conditionals. Enter the code below, which shows the
basic syntax for an if/else statement:

Listing 3.1 Big or small?
import Cocoa

var population: Int = 5422
var message: String

if population < 10000 {
 message = "\(population) is a small town!"
} else {
 message = "\(population) is pretty big!"
}

print(message)

You first declare population as an instance of the Int type and then assign it a value of 5422. Next,
you declare a variable called message that is of the String type. You leave this variable uninitialized at
first, meaning that you do not assign it a value.

From the Library of wu yuan

ptg16315837

Chapter 3 Conditionals

20

Next comes the conditional if/else statement. This is where message is assigned a value based
on whether the “if” statement evaluates to true. (Notice that you use string interpolation to put the
population into the message string.)

Figure 3.1 shows what your playground should look like. The console and the results sidebar show that
message has been set to be equal to the string literal assigned when the conditional evaluates to true.
How did this happen?

Figure 3.1 Conditionally describing a town’s population

The condition in the if/else statement tests whether your town’s population is less than 10,000 via
the < comparison operator. If the condition evaluates to true, then message is set to be equal to the first
string literal (“X is a small town!”). If the condition evaluates to false – if the population is 10,000 or
greater – the message is set to be equal to the second string literal (“X is pretty big!”). In this case, the
town’s population is less than 10,000, so message is set to “5422 is a small town!”

Table 3.1 lists Swift’s comparison operators.

Table 3.1 Comparison operators

Operator Description

< Evaluates whether the number on the left is smaller than the number on the right.

<= Evaluates whether the number on the left is smaller than or equal to the number on the
right.

> Evaluates whether the number on the left is greater than the number on the right.

>= Evaluates whether the number on the left is greater than or equal to the number on the
right.

== Evaluates whether the number on the left is equal to the number on the right.

!= Evaluates whether the number on the left is not equal to the number on the right.

=== Evaluates whether the two instances point to the same reference.

!== Evaluates whether the two instances do not point to the same reference.

From the Library of wu yuan

ptg16315837

if/else

21

You do not need to understand all of the operators’ descriptions right now. You will see many of them
in action as you move through the book, and they will become clearer as you use them. Refer back to
this table as a reference if you have questions.

Sometimes you only care about one aspect of the condition that is under evaluation. That is, you want
to execute code if a certain condition is met and do nothing if it is not. Enter the code below. (Notice
that new code, shown in bold, appears in two places.)

Listing 3.2 Is there a post office?
import Cocoa

var population: Int = 5422
var message: String
var hasPostOffice: Bool = true

if population < 10000 {
 message = "\(population) is a small town!"
} else {
 message = "\(population) is pretty big!"
}

print(message)

if !hasPostOffice {
 print("Where do we buy stamps?")
}

Here, you add a new variable called hasPostOffice. This variable has the type Bool, short for
“Boolean.” Boolean types can take one of two values: true or false. In this case, the Boolean
hasPostOffice variable keeps track of whether the town has a post office. You set it to true, meaning
that it does.

The ! is called a logical operator. This operator is known as “logical not.” It tests whether
hasPostOffice is false. You can think of ! as inverting a Boolean value: true becomes false, and false
becomes true.

The code above first sets hasPostOffice to true, then asks whether it is false. If hasPostOffice is
false, you do not know where to buy stamps, so you ask. If hasPostOffice is true, you know where to
buy stamps and do not have to ask, so nothing happens.

Because the town does have a post office (because hasPostOffice was initialized to true), the
condition !hasPostOffice is false. That is, it is not the case that hasPostOffice is false. Therefore,
the print() function never gets called.

Table 3.2 lists Swift’s logical operators.

Table 3.2 Logical operators

Operator Description

&& Logical AND: true if and only if both are true (false otherwise)

|| Logical OR: true if either is true (false only if both are false)

! Logical NOT: true becomes false, false becomes true

From the Library of wu yuan

ptg16315837

Chapter 3 Conditionals

22

Ternary Operator
The ternary operator is very similar to an if/else statement, but has more concise syntax. The syntax
looks likes this: a ? b : c. In English, the ternary operator reads something like, “If a is true, then do
b. Otherwise, do c.”

Let’s rewrite the town population check that used if/else using the ternary operator instead.

Listing 3.3 Using the ternary operator
...
if population < 10000 {
 message = "\(population) is a small town!"
} else {
 message = "\(population) is pretty big!"
}

message = population < 10000 ? "\(population) is a small town!" :
 "\(population) is pretty big!"
...

The ternary operator can be a source of controversy: some programmers love it; some programmers
loathe it. We come down somewhere in the middle. This particular usage is not very elegant. Your
assignment to message requires more than a simple a ? b : c. The ternary operator is great for
concise statements, but if your statement starts wrapping to the next line, we think you should use if/
else instead.

Hit Command-Z to undo, removing the ternary operator and restoring your if/else statement.

Listing 3.4 Restoring if/else
...
message = population < 10000 ? "\(population) is a small town!" :
 "\(population) is pretty big!"
if population < 10000 {
 message = "\(population) is a small town!"
} else {
 message = "\(population) is pretty big!"
}
...

From the Library of wu yuan

ptg16315837

Nested ifs

23

Nested ifs
You can nest if statements for scenarios with more than two possibilities. You do this by writing an
if/else statement inside the curly braces of another if/else statement. To see this, nest an if/else
statement within the else block of your existing if/else statement.

Listing 3.5 Nesting conditionals
import Cocoa

var population: Int = 5422
var message: String
var hasPostOffice: Bool = true

if population < 10000 {
 message = "\(population) is a small town!"
} else {
 if population >= 10000 && population < 50000 {
 message = "\(population) is a medium town!"
 } else {
 message = "\(population) is pretty big!"
 }
}

print(message)

if !hasPostOffice {
 print("Where do we buy stamps?")
}

Your nested if clause makes use of the >= comparator (comparison operator) and the && logical
operator to check whether population is within the range of 10,000 to 50,000. Because your town’s
population does not fall within that range, your message is set to “5422 is a small town!” as before.

Try bumping up the population to exercise the other branches.

Nested if/else statements are common in programming. You will find them out in the wild, and you
will be writing them as well. There is no limit to how deeply you can nest these statements. However,
the danger of nesting them too deeply is that it makes the code harder to read. One or two levels are
fine, but beyond that your code becomes less readable and maintainable.

There are ways to avoid nested statements. Next, you are going to refactor the code that you have
just written to make it a little easier to follow. Refactoring means changing code so that it does the
same work but in a different way. It may be more efficient, or may just look prettier or be easier to
understand.

From the Library of wu yuan

ptg16315837

Chapter 3 Conditionals

24

else if
The else if conditional lets you chain multiple conditional statements together. else if allows you
to check against multiple cases and conditionally executes code depending on which clause evaluates
to true. You can have as many else if clauses as you want. Only one condition will match.

To make your code a little easier to read, extract the nested if/else statement to be a standalone clause
that evaluates whether your town is of medium size.

Listing 3.6 Using else if
import Cocoa

var population: Int = 5422
var message: String
var hasPostOffice: Bool = true

if population < 10000 {
 message = "\(population) is a small town!"
} else if population >= 10000 && population < 50000 {
 message = "\(population) is a medium town!"
} else {
 if population >= 10000 && population < 50000 {
 message = "\(population) is a medium town!"
 } else {
 message = "\(population) is pretty big!"
 }
 message = "\(population) is pretty big!"
}

print(message)

if !hasPostOffice {
 print("Where do we buy stamps?")
}

You are using one else if clause, but you could have chained many more. This block of code is an
improvement over the nested if/else above. If you find yourself with lots of if/else statements, you
may want to use another mechanism, such as switch described in Chapter 5. Stay tuned.

Bronze Challenge
Add an additional else if statement to the town-sizing code to see if your town’s population is very
large. Choose your own population thresholds. Set the message variable accordingly.

From the Library of wu yuan

ptg16315837

25

4
Numbers

Numbers are the fundamental language of computers. They are also a staple of software development.
Numbers are used to keep track of temperature, determine how many letters are in a sentence, and
count the zombies infesting a town. Numbers come in two basic flavors: integers and floating-point
numbers.

Integers
You have worked with integers already, but we have not yet defined them. An integer is a number that
does not have a decimal point or fractional component – a whole number. Integers are frequently used
to represent a count of “things,” such as the number of pages in a book. A difference between integers
used by computers and numbers you use elsewhere is that an integer type on a computer takes up a
fixed amount of memory. Therefore, they cannot represent all possible whole numbers – they have a
minimum and maximum value.

We could tell you those minimum and maximum values, but we are going to let Swift tell you instead.
Create a new playground, name it Numbers.playground, and enter the following code:

Listing 4.1 Maximum and minimum values for Int
print("The maximum Int value is \(Int.max).")
print("The minimum Int value is \(Int.min).")

Open the Assistant Editor view for your playground by selecting View → Assistant Editor → Show
Assistant Editor or by pressing Command-Option-Return. In playgrounds, the Assistant Editor defaults
to showing you the timeline view. You should see the following output:

The maximum Int value is 9223372036854775807.
The minimum Int value is -9223372036854775808.

Why are those numbers the minimum and maximum Int values? Computers store integers in binary
form with a fixed number of bits. A bit is a single 0 or 1. Each bit position represents a power of 2; to
compute the value of a binary number, add up each of the powers of 2 whose bit is a 1. For example,
the binary representations of 38 and -94 using an 8-bit signed integer are shown in Figure 4.1. (Note
that the bit positions are read from right to left. Signed means that the integer can represent positive or
negative values. More about signed integers in a moment.)

From the Library of wu yuan

ptg16315837

Chapter 4 Numbers

26

Figure 4.1 Binary numbers

In OS X, Int is a 64-bit integer, which means it has 264 possible values. Imagine Figure 4.1, only
64 bits wide instead of 8. The power of two represented by the top (left-most) bit would be -263 =
-9,223,372,036,854,775,808 – exactly the value you see for Int.min in your playground. And, if you
were to add up 20, 21, …, 262, you would arrive at 9,223,372,036,854,775,807 – the value you see for
Int.max.

In iOS, Int is slightly more complicated. Apple introduced 64-bit devices starting with iPhone 5S, iPad
Air, and iPad mini with Retina display. Earlier devices had a 32-bit architecture. If you write an iOS
app for newer devices, which is called “targeting a 64-bit architecture,” Int is a 64-bit integer just like
in OS X. On the other hand, if you target a 32-bit architecture like iPhone 5 or iPad 2, Int is a 32-bit
integer. The compiler determines the appropriate size for Int when it builds your program.

If you need to know the exact size of an integer, you can use one of Swift’s explicitly sized integer
types. For example, Int32 is Swift’s 32-bit signed integer type. Use Int32 to see the minimum and
maximum value for a 32-bit integer.

Listing 4.2 Maximum and minimum values for Int32

print("The maximum Int value is \(Int.max).")
print("The minimum Int value is \(Int.min).")
print("The maximum value for a 32-bit integer is \(Int32.max).")
print("The minimum value for a 32-bit integer is \(Int32.min).")

Also available are Int8, Int16, and Int64, for 8-bit, 16-bit, and 64-bit signed integer types. You use
the sized integer types when you need to know the size of the underlying integer, such as for some
algorithms (common in cryptography) or to exchange integers with another computer (such as sending
data across the Internet). You will not use these types much; good Swift style is to use an Int for most
use cases.

All the integer types you have seen so far are signed, which means they can represent both positive
and negative numbers. Swift also has unsigned integer types to represent whole numbers greater than
or equal to 0. Every signed integer type (Int, Int16, etc.) has a corresponding unsigned integer type
(UInt, UInt16, etc.). The difference between signed and unsigned integers at the binary level is that the
power of two represented by the top-most bit (27 for 8-bit integers) is positive instead of negative. Test
a couple of these.

From the Library of wu yuan

ptg16315837

Creating Integer Instances

27

Listing 4.3 Maximum and minimum values for unsigned integers
print("The maximum Int value is \(Int.max).")
print("The minimum Int value is \(Int.min).")
print("The maximum value for a 32-bit integer is \(Int32.max).")
print("The minimum value for a 32-bit integer is \(Int32.min).")

print("The maximum UInt value is \(UInt.max).")
print("The minimum UInt value is \(UInt.min).")
print("The maximum value for a 32-bit unsigned integer is \(UInt32.max).")
print("The minimum value for a 32-bit unsigned integer is \(UInt32.min).")

Like Int, UInt is a 64-bit integer in OS X and may be 32-bit or 64-bit depending on the target for
iOS. The minimum value for all unsigned types is 0. The maximum value for an N-bit unsigned
type is 2N - 1. For example, the maximum value for a 64-bit unsigned type is 264 - 1, which equals
18,446,744,073,709,551,615.

There is a relationship between the minimum and maximum values of signed and unsigned types:
the maximum value of UInt64 is equal to the maximum value of Int64 plus the absolute value of the
minimum value of Int64. Both signed and unsigned types have 264 possible values, but the signed
version has to devote half of them to negative numbers.

Some quantities seem like they would naturally be represented by an unsigned integer. For example,
it does not make sense for the count of a number of objects to ever be negative. However, Swift style
is to prefer Int for all integer uses (including counts) unless an unsigned integer is required by the
algorithm or code you are writing. The explanation for this involves topics we are going to cover later
in this chapter, so we will return to the reasons behind consistently preferring Int soon.

Creating Integer Instances
You created instances of Int in Chapter 2, where you learned that you can declare a type explicitly or
implicitly.

Listing 4.4 Declaring Int explicitly and implicitly
...
print("The maximum value for a 32-bit unsigned integer is \(UInt32.max).")
print("The minimum value for a 32-bit unsigned integer is \(UInt32.min).")

let numberOfPages: Int = 10 // Declares the type explicitly
let numberOfChapters = 3 // Also of type Int, but inferred by the compiler

Implicit declarations with integer values are always assumed to be Int by the compiler. However, you
can create instances of the other integer types using explicit type declarations.

Listing 4.5 Declaring other integer types explicitly
...
let numberOfPages: Int = 10 // Declares the type explicitly
let numberOfChapters = 3 // Also of type Int, but inferred by the compiler

let numberOfPeople: UInt = 40
let volumeAdjustment: Int32 = -1000

From the Library of wu yuan

ptg16315837

Chapter 4 Numbers

28

What happens if you try to create an instance with an invalid value? What if, for example, you try to
create a UInt with a negative value or an Int8 with a value greater than 127? Try it and find out.

Listing 4.6 Declaring integer types with invalid values
...
let numberOfPeople: UInt = 40
let volumeAdjustment: Int32 = -1000

// Trouble ahead!
let firstBadValue: UInt = -1
let secondBadValue: Int8 = 200

You should see red exclamation marks in the left column of the playground. Click on the exclamation
marks to see the errors (Figure 4.2).

Figure 4.2 Integer overflow error

The compiler reports that the two values you have typed in “overflow when stored into” constants of
type UInt and Int8, respectively. “Overflows when stored into…” means that when the compiler tried
to store your number into the type you specified, it did not fit in the type’s allowed range of values. An
Int8 can hold values from -128 to 127; 200 is outside of that range, so trying to store 200 into an Int8
overflows.

Remove the problematic code.

Listing 4.7 No more bad values
...
// Trouble ahead!
let firstBadValue: UInt = -1
let secondBadValue: Int8 = 200

Operations on Integers
Swift allows you to perform basic mathematical operations on integers using the familiar operators +
(add), - (subtract), and * (multiply). Try printing the results of some arithmetic.

Listing 4.8 Performing basic operations
...
let numberOfPeople: UInt = 40
let volumeAdjustment: Int32 = -1000

print(10 + 20)
print(30 - 5)
print(5 * 6)

From the Library of wu yuan

ptg16315837

Integer division

29

The compiler respects the mathematical principles of precedence and associativity, which define the
order of operations when there are multiple operators in a single expression. For example:

Listing 4.9 Order of operations
...
print(10 + 20)
print(30 - 5)
print(5 * 6)

print(10 + 2 * 5) // 20, because 2 * 5 is evaluated first
print(30 - 5 - 5) // 20, because 30 - 5 is evaluated first

You could memorize the rules governing precedence and associativity. However, we recommend taking
the easy route and using parentheses to make your intentions explicit, because parentheses are always
evaluated first.

Listing 4.10 Parentheses are your friends
...
print(10 + 2 * 5) // 20, because 2 * 5 is evaluated first
print(30 - 5 - 5) // 20, because 30 - 5 is evaluated first
print((10 + 2) * 5) // 60, because (10 + 2) is now evaluated first
print(30 - (5 - 5)) // 30, because (5 - 5) is now evaluated first

Integer division
What is the value of the expression 11 / 3? You might (reasonably) expect 3.66666666667, but try it
out.

Listing 4.11 Integer division can give unexpected results
...
print((10 + 2) * 5)
print(30 - (5 - 5))

print(11 / 3) // Prints 3

The result of any operation between two integers is always another integer of the same type;
3.66666666667 is not a whole number and cannot be represented as an integer. Swift truncates the
fractional part, leaving just 3. If the result is negative, such as -11 / 3, the fractional part is still
truncated, giving a result of -3. Integer division, therefore, always rounds toward 0.

It is also occasionally useful to get the remainder of a division operation. The remainder operator,
%, returns exactly that. (If you are familiar with the modulo operator in math and some other
programming languages, be warned: the remainder operator is not the same, and using it on a negative
integer may not return what you expect.)

Listing 4.12 Remainders
...
print(11 / 3) // Prints 3
print(11 % 3) // Prints 2
print(-11 % 3) // Prints -2

From the Library of wu yuan

ptg16315837

Chapter 4 Numbers

30

Operator shorthand
All the operators that you have seen so far return a new value. There are also versions of all of these
operators that modify a variable in place. An extremely common operation in programming is to
increment an integer (add 1 to it) or decrement an integer (subtract 1 from it). You can use the ++
operator and the -- operator to perform these operations.

Listing 4.13 Incrementing and decrementing
...
print(-11 % 3) // Prints -2

var x = 10
x++
print("x has been incremented to \(x)")
x--
print("x has been decremented to \(x)")

What if you want to increase x by a number other than 1? You can use the += operator, which combines
addition and assignment.

Listing 4.14 Combining addition and assignment
...
x--
print("\(x) has been decremented")

x += 10 // Is equivalent to: x = x + 10
print("x has had 10 added to it and is now \(x)")

There are also shorthand operation-and-assignment combination operators for the other basic math
operations: -=, *=, /=, and %=.

Overflow operators
What do you think the value of z will be in the following code? (Think about it for a minute before you
type it in to find out for sure.)

Listing 4.15 Solve for z
...
let y: Int8 = 120
let z = y + 10

If you thought the value of z would be 130, you are not alone. But type it in, and you will find that
instead Xcode is showing you an error. Click on it to see a more detailed message (Figure 4.3).

Figure 4.3 Execution interrupted when adding to an Int8

From the Library of wu yuan

ptg16315837

Overflow operators

31

What does “Execution was interrupted” mean? Let’s break down what is happening:

1. y is an Int8, so the compiler assumes y + 10 must be an Int8, too.

2. Therefore, the compiler infers the type of z to be Int8.

3. When your playground runs, Swift adds 10 to y, resulting in 130.

4. Before storing the result back into z, Swift checks that 130 is a valid value for an Int8.

But Int8 can only hold values from -128 to 127; 130 is too big! Your playground therefore hits a trap,
which stops the program from running. We will discuss traps in more detail in Chapter 20. For now,
know that a trap results in your program stopping immediately and noisily, which indicates a serious
problem you need to examine.

Swift provides overflow operators that have different behavior when the value is too big (or too small).
Instead of trapping the program, they “wrap around.” To see what that means, try it now. The overflow
addition operator is &+. Substitute it into your code.

Listing 4.16 Using an overflow operator
...
let y: Int8 = 120
let z = y + 10
let z = y &+ 10
print("120 &+ 10 is \(z)")

The result of overflow-adding 120 + 10 and storing the result into an Int8 is -126. Was that what you
expected?

Probably not. (And that is OK!) To understand the logic of this result, think about incrementing y one
at a time. Since y is an Int8, once you get to 127 you cannot go any higher. Instead, incrementing one
more time wraps around to -128. So 120 + 8 = -128, 120 + 9 = -127, and 120 + 10 = -126.

There are also overflow versions of the subtraction and multiplication operators: &- and &*. It
should be apparent why there is an overflow version of the multiplication operator, but what about
subtraction? Subtraction clearly cannot overflow, but it can underflow. For example, trying to subtract
10 from an Int8 currently holding -120 would result in a value too negative to be stored in an Int8.
Using &- would cause this underflow to wrap back around and give you positive 126.

Integer operations overflowing or underflowing unexpectedly can be a source of serious and hard-to-
find bugs. Swift is designed to prioritize safety and minimize these errors. Swift’s default behavior of
trapping on overflow calculations may come as a surprise to you if you have programmed in another
language. Most other languages default to the “wrap-around” behavior that Swift’s overflow operators
provide. The philosophy of the Swift language is that it is better to trap (even though this may result
in a program crashing) than potentially have a security hole. There are some use cases for wrapping
arithmetic, so these special operators are available if you need them.

From the Library of wu yuan

ptg16315837

Chapter 4 Numbers

32

Converting Between Integer Types
So far, all the operations you have seen have been between two values with exactly the same type.
What happens if you try to operate on numbers with different types?

Listing 4.17 Adding values of different types
...
let a: Int16 = 200
let b: Int8 = 50
let c = a + b // Uh-oh!

This is a compile-time error. You cannot add a and b because they are not of the same type. Some
languages will automatically convert types for you to perform operations like this. Swift does not.
Instead, you have to manually convert types to get them to match.

In this case, you could either convert a to an Int8 or convert b to an Int16. Actually, though, only one
of these will succeed. (Why? Reread the previous section!)

Listing 4.18 Converting type to allow addition
...
let a: Int16 = 200
let b: Int8 = 50
let c = a + b // Uh-oh!
let c = a + Int16(b)

We can now return to the recommendation to stick with Int for almost all integer needs in Swift, even
for values that might naturally only make sense as positive values (like a count of “things”). Swift’s
default type inference for literals is Int, and you cannot typically perform operations between different
integer types without converting one of them. Using Int consistently throughout your code will greatly
reduce the need for you to convert types, and it will allow you to use type inference for integers freely.

Requiring you, the programmer, to decide how to convert variables in order to do math between
different types is another feature that distinguishes Swift from other languages. Again, this requirement
is in favor of safety and correctness. The C programming language, for example, will convert
numbers of different types in order to perform math between them, but the conversions it performs
are sometimes “lossy” – you may lose information in the conversion. Swift code that requires math
between numbers of different types will be more verbose, but it will be more clear about what
conversions are taking place. The increase in verbosity will make it easier for you to reason about and
maintain the code doing the math.

From the Library of wu yuan

ptg16315837

Floating-Point Numbers

33

Floating-Point Numbers
To represent a number that has a decimal point, like 3.2, you use a floating-point number. There are
two things to bear in mind about floating-point numbers. First, in computers floating-point numbers
are stored as a mantissa and an exponent, similar to how you write a number in scientific notation. For
example, 123.45 could be stored similarly to 1.2345 x 102 or 12.345 x 101 (although the computer will
use base 2 instead of base 10). Additionally, floating-point numbers are often imprecise: There are
many numbers that cannot be stored with perfect accuracy in a floating-point number. The computer
will store a very close approximation to the number you expect. (More on that in a moment.)

Swift has two basic floating-point number types: Float, which is a 32-bit floating-point number, and
Double, which is a 64-bit floating-point number. The different bit sizes of Float and Double do not
determine a simple minimum and maximum value range as they do for integers. Instead, the bit sizes
determine how much precision the numbers have. Double has more precision than Float, which means
it is able to store more accurate approximations.

The default inferred type for floating-point numbers in Swift is Double. As with different types of
integers, you can also declare Floats and Doubles explicitly.

Listing 4.19 Declaring floating-point number types
...
let d1 = 1.1 // Implicitly Double
let d2: Double = 1.1
let f1: Float = 100.3

All the same numeric operators work on floating-point numbers, including the remainder operator.

Listing 4.20 Operations on floating-point numbers
...
let d1 = 1.1 // Implicitly Double
let d2: Double = 1.1
let f1: Float = 100.3

print(10.0 + 11.4)
print(11.0 / 3.0)
print(12.4 % 5.0)

The fact that floating-point numbers are inherently imprecise is an important difference from integer
numbers that you should keep in mind. Let’s see an example. Recall the == operator from Chapter 3,
which determines whether two values are equal to each other. As you might expect, you can also use it
to compare floating-point numbers.

Listing 4.21 Comparing two floating-point numbers
...
print(10.0 + 11.4)
print(11.0 / 3.0)
print(12.4 % 5.0)

if d1 == d2 {
 print("d1 and d2 are the same!")
}

From the Library of wu yuan

ptg16315837

Chapter 4 Numbers

34

d1 and d2 were both initialized with a value of 1.1. So far, so good. Now, let’s add 0.1 to d1. You would
expect that to result in 1.2, so compare the result to that value.

Listing 4.22 Unexpected results
if d1 == d2 {
 print("d1 and d2 are the same!")
}

print("d1 + 0.1 is \(d1 + 0.1)")
if d1 + 0.1 == 1.2 {
 print("d1 + 0.1 is equal to 1.2")
}

The results you get may be very surprising! You should see the output d1 + 0.1 is 1.2 from your
first print(), but the print() inside the if statement does not run. Why not? Isn’t 1.2 equal to 1.2?

Well, sometimes it is and sometimes it is not.

As we said before, many numbers – including 1.2 – cannot be represented exactly in a floating-point
number. Instead, the computer stores a very close approximation to 1.2. When you add 1.1 and 0.1, the
result is really something like 1.2000000000000001. The value stored when you typed the literal 1.2 is
really something like 1.1999999999999999. Swift will round both of those to 1.2 when you print them.
But they are not technically equal, so the print() inside the if statement does not execute.

All the gory details behind floating-point arithmetic are outside the scope of this book. The moral
of this story is to be aware that there are some potential pitfalls with floating-point numbers. One
consequence is that you should never use floating-point numbers for values that must be exact (such as
calculations dealing with money). There are other tools available for those purposes.

Bronze Challenge
Set down your computer and grab a pencil and paper for this challenge. What is the binary
representation of -1 using an 8-bit signed integer?

If you took that same bit pattern and interpreted it as an 8-bit unsigned integer, what would the value
be?

From the Library of wu yuan

ptg16315837

35

5
Switch

In an earlier chapter, you saw one sort of conditional statement: if/else. Along the way, we discussed
that if/else can be somewhat inadequate in scenarios that have more than a few conditions. This
chapter looks at the switch statement. Unlike if/else, switch is ideal for handling multiple
conditions. As you will see, Swift’s switch statement is an incredibly flexible and powerful feature of
the language.

What Is a Switch?
if/else statements execute code based on whether the condition under consideration evaluates to true.
In contrast, switch statements consider a particular value and attempt to match it against a number
of cases. If there is a match, the switch executes the code associated with that case. Here is the basic
syntax of a switch statement.

switch aValue {
case someValueToCompare:
 // Do something to respond

case anotherValueToCompare:
 // Do something to respond

default:
 // Do something when there are no matches
}

In the example above, the switch only compares against two cases, but a switch statement can include
any number of cases. If aValue matches any of the comparison cases, then the body of that case will be
executed.

Notice the use of the default: case. It is executed when the comparison value does not match any of
the cases. The default case is not mandatory. However, it is mandatory for switch statements to have
a case for every value of the type being checked. So it is often efficient to use the default case rather
than providing a specific case for every value in the type to be matched.

As you might guess, in order for the comparisons to be possible the type in each of the cases must
match the type being compared against. In other words, aValue’s type must match the types of
someValueToCompare and anotherValueToCompare.

This code shows the basic syntax of a switch statement, but it is not completely well formed. In
fact, this switch statement would cause a compile-time error. Why? If you are curious, type it into a

From the Library of wu yuan

ptg16315837

Chapter 5 Switch

36

playground and see. Give aValue and all of the cases values. You should see an error for each of the
cases, telling you “'case' label in a 'switch' should have at least one executable statement.”

The problem is that every case must have at least one executable line of code associated with it. This
is the purpose of a switch statement: for each case to represent a separate branch of execution. In the
example, the cases only have comments under them. Because comments are not executable, the switch
statement does not meet this requirement.

Switch It Up
Create a new playground called Switch and set up a switch.

Listing 5.1 Your first switch

import Cocoa

var statusCode: Int = 404
var errorString: String
switch statusCode {
case 400:
 errorString = "Bad request"

case 401:
 errorString = "Unauthorized"

case 403:
 errorString = "Forbidden"

case 404:
 errorString = "Not found"

default:
 errorString = "None"
}

The switch statement above compares an HTTP status code against four cases in order to match a
String instance describing the error. Because case 404 matches statusCode, errorString is assigned
to be equal to "Not found", as you can see in the sidebar (Figure 5.1). Try changing the value of
statusCode to see the other results. When you are done, set it back to 404.

From the Library of wu yuan

ptg16315837

Switch It Up

37

Figure 5.1 Matching an error string to an status code

Suppose you want to use a switch statement to build up a meaningful error description. Update your
code as shown.

Listing 5.2 Switch cases can have multiple values
import Cocoa

var statusCode: Int = 404
var errorString: String = "The request failed with the error:"
switch statusCode {
case 400:
 errorString = "Bad request"

case 401:
 errorString = "Unauthorized"

case 403:
 errorString = "Forbidden"

case 404:
 errorString = "Not found"

default:
 errorString = "None"
case 400, 401, 403, 404:
 errorString = "There was something wrong with the request."
 fallthrough
default:
 errorString += " Please review the request and try again."
}

There is now only one case for all of the error status codes (which are listed and separated by commas).
If the statusCode matches any of the values in the case, the text "There was something wrong with
the request." is given to the errorString.

From the Library of wu yuan

ptg16315837

Chapter 5 Switch

38

You have also added a control transfer statement called fallthrough. Control transfer statements
allow you to modify the order of execution in some control flow. These statements transfer control
from one chunk of code to another. You will see another way to use control transfer statements in
Chapter 6 on looping.

Here, fallthrough tells the switch statement to “fall through” the bottom of a case to the next one.
If a matching case has a fallthrough control transfer statement at the end of it, it will first execute
its code, and then transfer control to the case immediately below. That case will execute its code –
whether or not it matches the value being checked against. If it also has a fallthrough statement at the
end, it will hand off control to the case below, and so on. fallthrough statements allow you to enter a
case and execute its code without having to match against it.

In this example, the fallthrough statement means that even though the first case matches, the switch
statement does not stop. It proceeds to the default case. Without the fallthrough keyword, the
switch statement would have ended execution after the first match. The use of fallthrough in this
example allows you to build up errorString without having to use strange logic that would guarantee
that the comparison value matched all of the cases of interest.

The default case uses a compound-assignment operator (+=) to add a recommendation to review the
request to the errorString. The end result of this switch statement is that errorString is set to:
“There was something wrong with the request. Please review the request and try again.” If the status
code provided had not matched the values in the case, the end result would have been errorString
being set to: “Please review the request and try again.”

If you are familiar with other languages like C or Objective-C, you will see that Swift’s switch
statement works differently. switch statements in these languages automatically fall through their
cases. These languages require a break control transfer statement at the end of the case’s code to break
out of the switch. Swift’s switch works in the opposite manner. If you match on a case, then the case
executes its code and the switch stops running.

From the Library of wu yuan

ptg16315837

Ranges

39

Ranges
You have seen switch statements where the cases have a single value to compare to the comparison
value and others where the cases have multiple values. switch statements can also compare to a range
of values using the syntax valueX...valueY. Update your code to see this in action.

Listing 5.3 Switch cases can have single values, multiple values, or ranges of
values
import Cocoa

var statusCode: Int = 404
var errorString: String
var errorString: String = "The request failed with the error:"
switch statusCode {
 case 400, 401, 403, 404:
 errorString += " There was something wrong with the request."
 fallthrough

 default:
 errorString += " Please review the request and try again."
}

switch statusCode {
case 100, 101:
 errorString += " Informational, 1xx."

case 204:
 errorString += " Successful but no content, 204."

case 300...307:
 errorString += " Redirection, 3xx."

case 400...417:
 errorString += " Client error, 4xx."

case 500...505:
 errorString += " Server error, 5xx."

default:
 errorString = "Unknown. Please review the request and try again."
}

The switch statement above takes advantage of the ... syntax of range matching to create an inclusive
range for categories of HTTP status codes. That is, 300...307 is a range that includes 300, 307, and
everything in between.

You also have cases with a single HTTP status code (the second case) and with two codes explicitly
listed and separated by a comma (the first case), as well as a default case. These are formed like the
cases you saw before. All of the case syntax options can be combined in a switch statement.

The result of this switch statement is that errorString is set to equal “The request failed with the
error: Client error, 4xx.” Again, try changing the value of statusCode to see the other results. Be sure
to set it back to 404 before continuing.

From the Library of wu yuan

ptg16315837

Chapter 5 Switch

40

Value binding
Suppose you want to include the actual numerical status codes in your errorString, whether the status
code is recognized or not. You can build on your previous switch statement to include this information
using Swift’s value binding feature.

Value binding allows you to bind the matching value in a certain case to a local constant or variable.
The constant or variable is thereafter available to use within only the matching case’s body.

Listing 5.4 Using value binding

...
switch statusCode {
case 100, 101:
 errorString += " Informational, 1xx."
 errorString += " Informational, \(statusCode)."

case 204:
 errorString += " Successful but no content, 204."

case 300...307:
 errorString += " Redirection, 3xx."
 errorString += " Redirection, \(statusCode)."

case 400...417:
 errorString += " Client error, 4xx."
 errorString += " Client error, \(statusCode)."

case 500...505:
 errorString += " Server error, 5xx."
 errorString += " Server error, \(statusCode)."

default:
 errorString = "Unknown. Please review the request and try again."

case let unknownCode:
 errorString = "\(unknownCode) is not a known error code."
}

Here you use string interpolation to pass statusCode into the errorString in each case.

Take a closer look at the last case. When the statusCode does not match any of the values provided
in the cases above, you create a temporary constant, called unknownCode, binding it to the value of
statusCode. For example, if the statusCode was set to be equal to 200, then your switch would set
errorString to be equal to: “200 is not a known error code.” Because unknownCode takes on the value
of any status code that does not match the earlier cases, you no longer need an explicit default case.

Note that by using a constant, you fix the value of unknownCode. If you needed to do work on
unknownCode, for whatever reason, you could have declared it with var instead of let. Doing so would
mean, for example, that you could then modify unknownCode’s value within the final case’s body.

This example shows you the syntax of value binding, but does not really add much. The standard
default case can produce the same result. Replace the final case with a standard default case.

From the Library of wu yuan

ptg16315837

where clauses

41

Listing 5.5 Reverting to the default case

...
switch statusCode {
case 100, 101:
 errorString += " Informational, \(statusCode)."

case 204:
 errorString += " Successful but no content, 204."

case 300...307:
 errorString += " Redirection, \(statusCode)."

case 400...417:
 errorString += " Client error, \(statusCode)."

case 500...505:
 errorString += " Server error, \(statusCode)."

case let unknownCode:
 errorString = "\(unknownCode) is not a known error code."

default:
 errorString = "\(statusCode) is not a known error code."
}

In the final case in Listing 5.4, you declared a constant whose value was bound to the status code. This
meant that the final case by definition matched everything that had not already matched a case in the
switch statement. The switch statement was, therefore, exhaustive.

Because your case for unknownCode now specifies a range of status codes, it is no longer exhaustive.
So, you add a default case indicating an unknown error.

where clauses
The code above is fine, as far as it goes. But it is not great. After all, a status code of 200 is not really
an error – 200 represents success! Therefore, it would be nice if your switch statement did not catch
these cases.

To fix this, use a where clause to make sure unknownCode is not a 2xx, success. where allows you to
check for additional conditions within your switch statement. This feature creates a sort of dynamic
filter within the switch.

From the Library of wu yuan

ptg16315837

Chapter 5 Switch

42

Listing 5.6 Using where to create a filter

import Cocoa

var statusCode: Int = 404
var statusCode: Int = 204
var errorString: String = "The request failed with the error:"
switch statusCode {
case 100, 101:
 errorString += " Informational, \(statusCode)."

case 204:
 errorString += " Successful but no content, 204."

case 300...307:
 errorString += " Redirection, \(statusCode)."

case 400...417:
 errorString += " Client error, \(statusCode)."

case 500...505:
 errorString += " Server error, \(statusCode)."

case let unknownCode where (unknownCode >= 200 && unknownCode < 300)
 || unknownCode > 505:
 errorString = "\(unknownCode) is not a known error code."

default:
 errorString = "\(statusCode) is not a known error code."
 errorString = "Unexpected error encountered."
}

Without Swift’s fallthrough feature, the switch statement will finish execution as soon as it finds
a matching case and executes its body. When statusCode is equal to 204, the switch will match at
the second case and the errorString will be set accordingly. So, even though 204 is within the range
specified in the where clause, the switch statement never gets to that clause.

Change statusCode to exercise the where clause and confirm that it works as expected.

Tuples and pattern matching
Now that you have your statusCode and errorString, it would be helpful to pair those two pieces.
Though they are logically related, they are currently stored in independent variables. A tuple can be
used to group the two.

A tuple is a finite grouping of two or more values that are deemed by the developer to be logically
related. The different values are grouped as a single, compound value. The result of this grouping is an
ordered list of elements.

Create your first Swift tuple that groups the statusCode and errorString.

From the Library of wu yuan

ptg16315837

Tuples and pattern matching

43

Listing 5.7 Creating a tuple
import Cocoa

var statusCode: Int = 204
var statusCode: Int = 418
var errorString: String = "The request failed with the error:"
switch statusCode {
case 100, 101:
 errorString += " Informational, \(statusCode)."

case 204:
 errorString += " Successful but no content, 204."

case 300...307:
 errorString += " Redirection, \(statusCode)."

case 400...417:
 errorString += " Client error, \(statusCode)."

case 500...505:
 errorString += " Server error, \(statusCode)."

case let unknownCode where (unknownCode >= 200 && unknownCode < 300)
 || unknownCode > 505:
 errorString = "\(unknownCode) is not a known error code."

default:
 errorString = "Unknown error encountered."
}

let error = (statusCode, errorString)

You made a tuple by grouping statusCode and errorString within a pair of parentheses. The result
was assigned to the constant error.

The elements of a tuple can be accessed by their index. Type in the following to access each element
stored inside of the tuple.

Listing 5.8 Accessing the elements of a tuple
...
let error = (statusCode, errorString)
error.0
error.1

You should see 418 and "Unknown error encountered." displayed in the results sidebar for error.0
(that is, the first element stored in the tuple) and error.1 (the second element stored in the tuple),
respectively.

Swift’s tuples can also have named elements. Naming a tuple’s elements makes for more readable
code. It is not very easy to keep track of what values are represented by error.0 and error.1. Named
elements make error.code and error.error easier to parse.

Give your tuple’s elements these more informative names.

From the Library of wu yuan

ptg16315837

Chapter 5 Switch

44

Listing 5.9 Naming the tuple’s elements
...
let error = (statusCode, errorString)
error.0
error.1
let error = (code: statusCode, error: errorString)
error.code
error.error

Now you can access your tuple’s elements by using their related names: code for statusCode and
error for errorString. Your results sidebar should have the same information displayed.

Pattern matching
You have already seen an example of pattern matching when you used ranges in the switch statement’s
cases. This form of pattern matching is called interval matching because each case attempts to match a
given interval against the comparison value. Tuples are also helpful in matching patterns.

Imagine, for example, that you have an application that is making multiple web requests. You save the
HTTP status code that comes back with the server’s response each time. Later, you would like to see
which requests, if any, failed with the status code 404 (the “requested resource not found” error). Using
a tuple in the switch statement’s cases enables you to match against very specific patterns.

Add the following code to switch on your new tuple.

Listing 5.10 Pattern matching in tuples
...
let error = (code: statusCode, error: errorString)
error.code
error.error

let firstErrorCode = 404
let secondErrorCode = 200
let errorCodes = (firstErrorCode, secondErrorCode)

switch errorCodes {
case (404, 404):
 print("No items found.")
case (404, _):
 print("First item not found.")
case (_, 404):
 print("Second item not found.")
default:
 print("All items found.")
}

You first add a few new constants. firstErrorCode and secondErrorCode represent the HTTP status
codes associated with two different web requests. errorCodes is a tuple that groups these codes.

The new switch statement matches against several cases to determine what combination of 404s
the requests might have yielded. The underscore (_) in the second and third cases is a wildcard that
matches anything, which allows these cases to focus on a specific request’s error code. The first case
will match only if both of the requests failed with error code 404. The second case will match only if
the first request failed with 404. The third case will match only if the second request failed with 404.
Finally, if we do not find a match, that means none of the requests failed with the status code 404.

From the Library of wu yuan

ptg16315837

switch vs. if/else

45

Because firstErrorCode did have the status code 404, you should see "First item not found." in
the results sidebar.

switch vs. if/else
switch statements are primarily useful for comparing a value against a number of potentially matching
cases. if/else statements, on the other hand, are better used for checking against a single condition.
switches also offer a number of powerful features that allow you to match against ranges, bind values
to local constants or variables, and match patterns in tuples – to name just a few features covered in this
chapter.

Sometimes you will be tempted to use a switch statement on a value that could potentially match
against any number of cases, but you really only care about one of them. For example, imagine
checking an age constant of type Int looking for a specific demographic: ages 18-35. You might think
writing a switch statement with a single case is your best option:

Listing 5.11 Single case switch
...
let age = 25
switch age {
case 18...35:
 print("Cool demographic")
default:
 break
}

age is a constant set to be equal to 25. It is possible that age could take on any reasonable value
between 0 and 100 or so, but you are only interested in a particular range. The switch checks to see
whether age is in the range from 18 to 35. If it is, then age is in the desired demographic and some
code is executed. Otherwise, age is not in the target demographic and the default case matches,
which simply transfers the flow of execution to outside of the switch with the break control transfer
statement.

Notice that you had to include a default case; switch statements have to be exhaustive. If this does
not feel quite right to you, we agree. You do not really want to do anything here, which is why you
used a break. It would be better to not have to write any code when you do not want anything to
happen!

Swift provides a better way. In Chapter 3 you learned about if/else statements. Swift also provides an
if-case statement that provides pattern matching similar to what a switch statement offers.

Listing 5.12 if-case
...
let age = 25
switch age {
case 18...35:
 print("Cool demographic")
default:
 break
}

if case 18...35 = age {
 print("Cool demographic")
}

From the Library of wu yuan

ptg16315837

Chapter 5 Switch

46

This syntax is much more elegant. It simply checks to see if age is in the given range. You did not have
to write a default case that you did not care about. Instead, the syntax of the if-case allows you to
focus on the single case of interest: whether age is in the range of 18 to 35.

if-cases can also include where clauses, just like switch statements. Say, for example, you wanted to
know if age was greater than or equal to 21.

Listing 5.13 if-cases with where clauses
...
let age = 25

if case 18...35 = age {
 print("Cool demographic")
}
if case 18...35 = age where age >= 21 {
 print("In cool demographic and of drinking age")
}

The new code above does the same as before, but adds something new. It also checks to see if age is 21
or greater. In the United States, this means that the person in question is also old enough to drink.

if-cases provide an elegant substitute for switch statements with only one condition. They also enjoy
all of the pattern matching power that make switch statements so wonderful. Use an if-case when
you have only one case in mind for a switch and you do not care about the default case. Because
if-case statements are just regular if/else statements with improved pattern matching, you can also
write the usual else block – but doing so would mean that you are effectively writing the default case
and would detract from some of the if-case’s allure.

Bronze Challenge
Review the switch statement below. What will be logged to the console? After you have decided, enter
the code in a playground to see if you were right.

let point = (x: 1, y: 4)

switch point {
case let q1 where (point.x > 0) && (point.y > 0):
 print("\(q1) is in quadrant 1")

case let q2 where (point.x < 0) && point.y > 0:
 print("\(q2) is in quadrant 2")

case let q3 where (point.x < 0) && point.y < 0:
 print("\(q3) is in quadrant 3")

case let q4 where (point.x > 0) && point.y < 0:
 print("\(q4) is in quadrant 4")

case (_, 0):
 print("\(point) sits on the x-axis")

case (0, _):
 print("\(point) sits on the y-axis")

default:
 print("Case not covered.")
}

From the Library of wu yuan

ptg16315837

47

6
Loops

Loops help with tasks that are repetitive in nature. They execute a set of code repeatedly, either for a
given number of iterations or as long as a defined condition is met. Loops can save you from writing
tedious and repetitive code, so take note! You will be using them a lot in your development.

In this chapter, you will use two sorts of loops:

• the for loop

• the while loop

The for loop is ideal for iterating over the specific elements of an instance or collection of instances
when the number of iterations to perform is either known or easy to derive. The while loop, on the
other hand, is well suited for tasks that execute repeatedly as long as a certain condition is met. Each
of these has variations. Let’s start with a for-in loop, which performs a set of code for each item in a
specific range, sequence, or collection.

for-in Loops
Create a new playground called Loops. Create a loop as shown.

Listing 6.1 A for-in loop
import Cocoa

var myFirstInt: Int = 0

for i in 1...5 {
 ++myFirstInt
 print(myFirstInt)
}

First, you declare a variable called myFirstInt that is an instance of Int and is initialized to be equal
to 0. Next, you create a for-in loop. Let’s look at the components of the loop.

The for keyword signals that you are writing a loop. You next declare a constant called i that
represents the current value of the iterator. This constant only exists inside the body of the loop. In the
first iteration of the loop, its value is the first value in the range of the loop. Because you used ... to
create an inclusive range of 1 through 5, the first value of i is 1. In the second iteration, the value of i
is 2, and so on. (To help keep track of where the loop is in its designated range, the value of this iterator
is changed at each iteration of the loop.)

From the Library of wu yuan

ptg16315837

Chapter 6 Loops

48

The code inside the braces ({}) is executed at each iteration of the loop. For each iteration, you
increment myFirstInt by 1. You then log this value to the console. These two steps – incrementing and
logging – continue until i reaches the end of the range: 5. This loop is represented in Figure 6.1.

Figure 6.1 Looping over a range

To see the results of your loop, find and click on the results button on the right edge of the results
sidebar on the line with the code ++myFirstInt (Figure 6.2).

Figure 6.2 The results button

This opens a results view that displays the instance’s value history inline with the code of the
playground. You can grow or shrink the window of the graph by clicking and dragging its edges.

From the Library of wu yuan

ptg16315837

for-in Loops

49

Move your mouse pointer into this new window and you will see that you can select individual points
on this plot.

Figure 6.3 Selecting a value on the plot

For example, if you click the middle point, the playground will tell you that the value of this point is 3.

Because you declared i to be the iterator in the for-in loop, you can access i inside of each iteration
of the loop. Change your output to show the value of i at each iteration.

Listing 6.2 Printing the changing value of i to the console
for i in 1...5 {
 ++myFirstInt
 print(myFirstInt)
 print("myFristInt equals \(myFirstInt) at iteration \(i)")
}

Instead of using an explicitly declared iterator, you can ignore it by using an _. Replace your named
constant with this wildcard and return your print() statement to its earlier implementation.

Listing 6.3 Replacing i with _
for i in 1...5 {
for _ in 1...5 {
 ++myFirstInt
 print("myFirstInt equals \(myFirstInt) at iteration \(i)")
 print(myFirstInt)
}

This implementation of the for-in loop ensures that a specific operation occurs a set number of times.
It does not check and report the value of the iterator in each pass of the loop over its range. You would
typically use the explicit iterator i if you wanted to refer to that iterator within your loop’s code block.

From the Library of wu yuan

ptg16315837

Chapter 6 Loops

50

for case
Swift’s for-in loop supports the use of case statements like the ones you saw in Chapter 5. Using a
case allows for finer control over when the loop executes its code. Use a case with a where clause to
provide a logical test that must be met in order to execute the loop’s code. If the condition established
by the where clause is not met, then the loop’s code is not run.

For example, imagine that you want to write a loop that iterates over a range, but only executes its code
when the loop encounters a value that is a multiple of 3.

Listing 6.4 for-in loop with a case
for _ in 1...5 {
 ++myFirstInt
 print(myFirstInt)
}

for case let i in 1...100 where i % 3 == 0 {
 print(i)
}

The case lets you create a local constant i that you can then use in the where clause’s condition. Each
integer in the range of 1 to 100 is bound to i. The where clause then checks to see if i is divisible by
3. If the remainder is 0, the loop will execute its code. The result is that the loop will print out every
multiple of 3 from 1 to 100.

Figure 6.4 demonstrates the flow of execution for this loop.

Figure 6.4 for case diagram

Imagine how you might accomplish this same result without the help of a for case.

From the Library of wu yuan

ptg16315837

A Quick Note on Type Inference

51

for i in 1...100 {
 if i % 3 == 0 {
 print(i)
 }
}

The above code does the same work as the for case above, but it is less elegant. There are more lines
of code and there is a nested conditional within the loop. Generally speaking, we prefer fewer lines of
code, so long as it is not overly complex to read. Swift’s for case pattern and where clauses are very
readable, so we typically choose to use this more concise solution.

for case statements can be used in much more powerful ways. They are especially helpful with
collections, as you will see in Chapter 9.

A Quick Note on Type Inference
Take a look at this code that you entered earlier:

for i in 1...5 {
 ++myFirstInt
 print("myFirstInt equals \(myFirstInt) at iteration \(i)")
}

Notice that i is not declared to be of the Int type. It could be, as in: for i: Int in 1...5 (the let
portion of the declaration is assumed by the syntax for you). But it is not necessary. The type of i is
inferred from its context. In this example, i is inferred to be of type Int because the specified range
contains integers.

Type inference is handy. It lets you type less, which makes for fewer typos. However, there are a few
cases where you need to specifically declare the type. We will highlight those when they come up. In
general, however, we recommend that you take advantage of type inference whenever possible, and
you will see many examples of it in this book.

for Loops
Swift also supports the classic for loop:

for initialization; condition; increment {
 // Code to execute at each iteration
}

Semicolons separate the three parts of the for loop. Each part performs a specific function in the three
steps of the loop’s execution:

1. When the loop is entered, the initialization expression is evaluated to set up the iterator for the
loop.

2. The condition expression is evaluated. If it is false, the loop is ended and execution of the code is
transferred to after the loop. If it is true, then the code inside the loop’s braces ({}) is executed.

3. After the code between the braces is executed, the increment expression is executed. Depending
on the code, the incrementer can be increased or decreased. Once the incrementer is set, step 2 is
repeated to determine whether the loop should continue iterating.

From the Library of wu yuan

ptg16315837

Chapter 6 Loops

52

Refactor the implementation of the for-in loop from the beginning of this chapter to use the more
traditional form.

Listing 6.5 A classic for loop
...
for var i = 1; i < 6; ++i {
 ++myFirstInt
 print(myFirstInt)
}

As you can see, the implementation is similar to the for-in loop and the result is exactly the same.
Typically, you would choose this form over the for-in loop if you want to have specific control over
the iterator’s progress through the loop. For example, instead of incrementing i by 1 at each pass of the
loop, you could instead increment by 3, or do something entirely different.

Figure 6.5 shows the flow of execution in this code.

Figure 6.5 for loop diagram

while Loops
The classic for loop can also be expressed as a while loop.

Listing 6.6 A while loop
...
var i = 1
while i < 6 {
 ++myFirstInt
 print(myFirstInt)
 ++i
}

From the Library of wu yuan

ptg16315837

repeat-while Loops

53

Like the for loop, this while loop initializes an incrementer (var i = 1), evaluates a condition
(i < 6), executes code if the condition is valid (++myFirstInt, print(myFirstInt), and increments
the counter (++i)), and then returns to the top of the while loop to determine whether the loop should
continue iterating.

while loops are best for circumstances in which the number of iterations the loop will pass through
is unknown. For example, imagine a simple space shooter game with a spaceship that continuously
fires its blasters so long as the spaceship has shields. Various external factors may lower or increase
the ship’s shields, so the exact number of iterations cannot be known. But if the shields have a
value greater than 0, the blasters will keep shooting. The code snippet below illustrates a simplified
implementation of this idea.

while shields > 0 {
 // Fire blasters!
 print("Fire blasters!")
}

repeat-while Loops
Swift also supports a type of while loop called the repeat-while loop. The repeat-while loop is
called a do-while loop in other languages. The difference between while and repeat-while loops
is when they evaluate their condition. The while loop evaluates its condition before stepping into the
loop. This means that the while loop may not ever execute, because its condition could be false when
it is first evaluated. The repeat-while loop, on the other hand, executes its loop at least once, and then
evaluates its condition. The syntax for the repeat-while loop demonstrates this difference.

repeat {
 // Fire blasters!
 print("Fire blasters!")
} while shields > 0

In this repeat-while version of the space shooter game, the code block that contains the line
print("Fire blasters!") is executed first. Then the repeat-while loop’s condition is evaluated to
determine whether the loop should continue iterating. Thus, the repeat-while loop ensures that the
spaceship fires its blasters at least one time.

The repeat-while loop avoids a somewhat depressing scenario: What if the spaceship is created and,
by some freak accident, immediately loses all of its shields? Perhaps it spawns in front of an oncoming
asteroid. It would not even get to fire a shot. That would be a pretty poor user experience. A repeat-
while loop ensures that the blasters fire at least once to avoid this anticlimactic scenario.

From the Library of wu yuan

ptg16315837

Chapter 6 Loops

54

Control Transfer Statements, Redux
Let’s revisit control transfer statements in the context of loops. Recall from Chapter 5 (where you used
fallthrough and break) that control transfer statements change the typical order of execution. In the
context of a loop, you can control whether execution iterates to the top of the loop or leaves the loop
altogether.

Let’s elaborate on the space shooter game to see how this works. You are going to use the continue
control transfer statement to stop the loop where it is and begin again from the top.

Listing 6.7 Using continue
var shields = 5
var blastersOverheating = false
var blasterFireCount = 0
while shields > 0 {

 if blastersOverheating {
 print("Blasters are overheated! Cooldown initiated.")
 sleep(5)
 print("Blasters ready to fire")
 sleep(1)
 blastersOverheating = false
 blasterFireCount = 0
 }

 if blasterFireCount > 100 {
 blastersOverheating = true
 continue
 }
 // Fire blasters!
 print("Fire blasters!")

 ++blasterFireCount
}

You are adding a good bit of code, so let’s break it down. First, you add some variables that keep track
of the following information:

• shields is of type Int, keeps track of the shield strength, and is initialized to be equal to 5

• blastersOverheating is a Boolean initialized to false that keeps track of whether the blasters
need time to cool down

• blasterFireCount is of type Int and keeps track of the number of shots the spaceship has fired
(which determines whether the blasters are overheating)

After creating your variables, you wrote two if statements, both contained in a while loop with a
condition of shields > 0. The first if statement checks whether the blasters are overheating, and
the second checks the fire count. For the first, if the blasters are overheating, a number of code steps
execute. You log information to the console and the sleep() function tells the system to wait for 5
seconds, which models the blasters’ cooldown phase. You next log that the blasters are ready to fire
again (after waiting for 1 more second, which you do simply because it makes it easier to see what logs
to the console next), set blastersOverheating to be equal to false, and also reset blasterFireCount
to 0.

From the Library of wu yuan

ptg16315837

Control Transfer Statements, Redux

55

With shields intact and blasters cooled down, the spaceship is ready to fire away.

The second if statement checks whether blasterFireCount is greater than 100. If this conditional
evaluates to true, you set the Boolean for blastersOverheating to be true. At this point, the blasters
are overheated, so you need a way to jump back up to the top of the loop so that the spaceship does not
fire. You use continue to do this. Since the spaceship’s blasters have overheated, the conditional in the
first if statement will evaluate to true, and the blasters will shut down to cool off.

If the second conditional is evaluated to be false, you log to the console as before. Next, you
increment the blasterFireCount by one. After you increment this variable, the loop will jump back up
to the top, evaluate the condition, and either iterate again or hand off the flow of execution to the line
immediately after the closing brace of the loop. Figure 6.6 shows this flow of execution.

Figure 6.6 while loop diagram

Note that this code will execute indefinitely. There is nothing to change the value of shields, so while
shields > 0 is always satisfied. If nothing changes, and your computer has enough power to run
forever, this loop will continue to execute. This is what we call an infinite loop.

From the Library of wu yuan

ptg16315837

Chapter 6 Loops

56

But all games must come to an end. Let’s say that the game is over when the user has destroyed 500
space demons. To exit the loop, you will use the break control transfer statement.

Listing 6.8 Using break
var shields = 5
var blastersOverheating = false
var blasterFireCount = 0
var spaceDemonsDestroyed = 0
while shields > 0 {

 if spaceDemonsDestroyed == 500 {
 print("You beat the game!")
 break
 }

 if blastersOverheating {
 print("Blasters are overheated! Cooldown initiated.")
 sleep(5)
 print("Blasters ready to fire")
 sleep(1)
 blastersOverheating = false
 blasterFireCount = 0
 continue
 }

 if blasterFireCount > 100 {
 blastersOverheating = true
 continue
 }
 // Fire blasters!
 print("Fire blasters!")
 ++blasterFireCount
 ++spaceDemonsDestroyed
}

Here, you add a new variable called spaceDemonsDestroyed, which is incremented each time the
blasters fire. (You are a pretty good shot, apparently.) Next, you add a new if statement that checks
whether the spaceDemonsDestroyed variable is equal to 500. If it is, you log victory to the console.

Note the use of break. The break control transfer statement will exit the while loop, and execution
will pick up on the line immediately after the closing brace of the loop. This makes sense: if the user
has destroyed 500 space demons and the game is won, the blasters do not need to fire anymore.

Bronze Challenge
Use a loop to count by 2 from 0 up to 100. Use another loop to make sure the first loop is run 5 times.
Hint: one good way to do this is to use a nested loop.

From the Library of wu yuan

ptg16315837

57

7
Strings

In programming, textual content is represented by strings. You have seen and used strings already.
"Hello, playground", for example, is a string that appears at the top of every newly created
playground. Like all strings, it can be thought of as an ordered collection of characters. In this chapter,
you will see more of what strings can do.

Working with Strings
In Swift, you create strings with the String type. Create a new playground called
Strings.playground and add the following new instance of the String type.

Listing 7.1 Hello, playground
let playground = "Hello, playground"

You have created a String instance named playground using the string literal syntax, which encloses a
sequence of text with quotation marks.

This instance was created with the let keyword, making it a constant. Recall that being a constant
means that the instance cannot be changed. If you do try to change it, the compiler will give you an
error.

Create a new string, but make this instance mutable.

Listing 7.2 Creating a mutable string
let playground = "Hello, playground"
var mutablePlayground = "Hello, mutable playground"

mutablePlayground is a mutable instance of the String type. In other words, you can change the
contents of this string. Use the addition and assignment operator to add some final punctuation.

Listing 7.3 Adding to a mutable string
let playground = "Hello, playground"
var mutablePlayground = "Hello, mutable playground"
mutablePlayground += "!"

Take a look at the results sidebar on the righthand side of the playground. You should see that the
instance has changed to "Hello, mutable playground!"

From the Library of wu yuan

ptg16315837

Chapter 7 Strings

58

The characters that comprise Swift’s strings are of the Character type. You use Swift’s Character
type to represent Unicode characters, and in combination Characters form a String instance.

Loop through the mutablePlayground string to see the Character type in action.

Listing 7.4 mutablePlayground’s Characters
let playground = "Hello, playground"
var mutablePlayground = "Hello, mutable playground"
mutablePlayground += "!"
for c: Character in mutablePlayground.characters {
 print("\(c)")
}

This loop iterates through every Character c in mutablePlayground. In it, you access the
characters property of the String mutablePlayground. Do not worry about what a property is
right now; this topic will be covered in detail in Chapter 16. For now, all you need to know is that
a property is a way a type holds on to data. In Swift, you access properties via dot syntax, as in
mutablePlayground.characters.

The characters property represents the collection of characters that make up the instance. Each
iteration of the loop logs one of the String’s characters to the console. Every character is logged to the
console on its own line because print() prints a line break after logging its content.

Reveal the console. Your output should look like Figure 7.1.

Figure 7.1 Logging characters in a string

From the Library of wu yuan

ptg16315837

Unicode

59

Unicode
Unicode is an international standard that encodes characters so they can be seamlessly processed
and represented regardless of the platform. Unicode represents human language (and other forms of
communication like emoji) on computers. Every character in the standard is assigned a unique number.

Swift’s String and Character types are built on top of Unicode and they do the majority of the heavy
lifting. Nonetheless, it is good to have an understanding of how these types work with Unicode. Having
this knowledge will likely save you some time and frustration in the future.

Unicode scalars
At their heart, strings in Swift are composed of Unicode scalars. Unicode scalars are 21-bit numbers
that represent a specific character in the Unicode standard. For example, U+0061 represents the Latin
small letter ‘a’. U+1F60E represents the smiley-faced emoji with sunglasses. The text U+1F60E is the
standard way of writing a Unicode character. The 1F60E portion is a number written in hexadecimal, or
base 16.

Create a constant to see how to use specific Unicode scalars in Swift and the playground.

Listing 7.5 Using a Unicode scalar
let playground = "Hello, playground"
var mutablePlayground = "Hello, mutable playground"
mutablePlayground += "!"

for c: Character in mutablePlayground.characters {
 print("'\(c)'")
}
let oneCoolDude = "\u{1F60E}"

This time, you used a new syntax to create a string. The quotation marks are familiar, but what is
inside them is not a string literal, as you have seen before. It does not match the results in the sidebar
(Figure 7.2).

Figure 7.2 Emoji in the sidebar

From the Library of wu yuan

ptg16315837

Chapter 7 Strings

60

The \u{} syntax represents the Unicode scalar whose hexadecimal number appears between the braces.
In this case, oneCoolDude is assigned to be equal to the character representing the sunglasses-wearing
emoji.

How does this relate to more familiar strings? It turns out that every string in Swift is composed of
Unicode scalars. So why do they look unfamiliar? To explain, we need to discuss a few more concepts.

Every character in Swift is built up from one or more Unicode scalars. One Unicode scalar maps onto
one fundamental character in a given language. But we say that characters are built from “one or more”
Unicode scalars because there are also combining scalars. For example, U+0301 represents the Unicode
scalar for the combining acute accent: ´. This scalar is placed on top of – that is, combined with – the
character that precedes it. You can use this scalar with the Latin small letter ‘a’ to create the character
á.

Listing 7.6 Using a combining scalar
let playground = "Hello, playground"
var mutablePlayground = "Hello, mutable playground"
mutablePlayground += "!"

for c: Character in mutablePlayground.characters {
 print("'\(c)'")
}

let oneCoolDude = "\u{1F60E}"
let aAcute = "\u{0061}\u{0301}"

You should see á, the combination of the letter ‘a’ and the acute accent, in the results sidebar.

Every character in Swift is an extended grapheme cluster. Extended grapheme clusters are sequences
of one or more Unicode scalars that combine to produce a single human-readable character. Earlier,
you decomposed the character á into its two constituent Unicode scalars: the letter and the accent.
Making characters extended grapheme clusters gives Swift flexibility in dealing with complex script
characters.

Swift also provides a mechanism to see all of the Unicode scalars in a string. For example, you can
see all of the Unicode scalars that Swift uses to create the instance of String named playground that
you created earlier using the unicodeScalars property, which holds all of the scalars that Swift uses to
make the string. Add the following code to your playground to see playground’s Unicode scalars.

Listing 7.7 Revealing the Unicode scalars behind a string
let playground = "Hello, playground"
var mutablePlayground = "Hello, mutable playground"
mutablePlayground += "!"

for c: Character in mutablePlayground.characters {
 print("'\(c)'")
}

let oneCoolDude = "\u{1F60E}"

let aAcute = "\u{0061}\u{0301}"
for scalar in playground.unicodeScalars {
 print("\(scalar.value) ")
}

From the Library of wu yuan

ptg16315837

Canonical equivalence

61

If it is not already open, open the assistant editor to view the console. You should see the following
output: 72 101 108 108 111 44 32 112 108 97 121 103 114 111 117 110 100. What do all of
these numbers mean?

Recall that the unicodeScalars property holds on to data representing all of the Unicode scalars
used to create the string instance playground. Each number on the console corresponds to a Unicode
scalar representing a single character in the string. But they are not the hexadecimal Unicode numbers.
Instead, each is represented as an unsigned 32-bit integer. The first, 72, corresponds to the Unicode
scalar value of U+0048, or an uppercase ‘H’.

Canonical equivalence
While there is a role for combining scalars, Unicode also provides already-combined forms for
some common characters. For example, there is a specific scalar for á. You do not actually need to
decompose it into its two parts: the letter and the accent. The scalar is U+00E1. Create a new constant
string that uses this Unicode scalar.

Listing 7.8 Using a precomposed character
...
let aAcute = "\u{0061}\u{0301}"

for scalar in playground.unicodeScalars {
 print("\(scalar.value) ")
}

let aAcutePrecomposed = "\u{00E1}"

As you can see, aAcutePrecomposed appears to have the same value as aAcute. Indeed, if you check to
see if these two characters are the same, you will find that Swift answers “yes.”

Listing 7.9 Checking equivalence
let aAcute = "\u{0061}\u{0301}"

for scalar in playground.unicodeScalars {
 print("\(scalar.value) ")
}

let aAcutePrecomposed = "\u{00E1}"

let b = (aAcute == aAcutePrecomposed) // true

aAcute was created using two Unicode scalars, and aAcutePrecomposed only used one. Why does
Swift say that they are equivalent? The answer is canonical equivalence.

Canonical equivalence refers to whether two sequences of Unicode scalars are the same linguistically.
Two characters, or two strings, are considered equal if they have the same linguistic meaning
and appearance, regardless of whether they are built from the same Unicode scalars. aAcute and
aAcutePrecomposed are equal strings because both represent the Latin small letter ‘a’ with an acute
accent. The fact that they were created with different Unicode scalars does not affect this.

From the Library of wu yuan

ptg16315837

Chapter 7 Strings

62

Counting elements
Canonical equivalence has implications for counting elements of a string. You might think that aAcute
and aAcutePrecomposed would have different character counts. Write the following code to check.

Listing 7.10 Counting characters
let aAcute = "\u{0061}\u{0301}"

for scalar in playground.unicodeScalars {
 print("\(scalar.value) ")
}

let aAcutePrecomposed = "\u{00E1}"
let b = (aAcute == aAcutePrecomposed)
print("aAcute: \(aAcute.characters.count);
 aAcuteDecomposed: \(AcutePrecomposed.characters.count)")

You use the count property on characters to determine the character count of these two strings. count
iterates over a character of string’s Unicode scalars to determine its length. The results sidebar reveals
that the character counts are the same: both are 1 character long. Canonical equivalence means that
whether you use a combining scalar or a precomposed scalar, the result is treated as a single character.

Indices and ranges
Because strings can be thought of as ordered collections of characters, you might think that you can
access a specific character on a string like so:

let index = playground[3] // 'l'???

The code playground[3] uses the subscript syntax. In general, the brackets ([]) indicate that you are
using a subscript in Swift. Subscripts allow you to retrieve a specific value within a collection.

3 is an index that is used to find a particular element within a collection. The code above suggests
that you are trying to select the fourth character from the collection of characters making up the
playground string (the first index is 0). You will learn more about subscripts below, and will also see
them in action in Chapter 9 and Chapter 10 on arrays and dictionaries.

If you tried to use a subscript like this, you would get an error: “'subscript' is unavailable: cannot
subscript String with an Int.” The Swift compiler will not let you access a specific character on a
string via a subscript index. This limitation has to do with the way Swift strings and characters are
stored. You cannot index a string with an integer because Swift does not know which Unicode scalar
corresponds to a given index without stepping through every preceding character. This operation can be
expensive. Therefore, Swift forces you to be more explicit.

Swift uses a type called String.Index to keep track of indices. Do not worry about the . in
String.Index; it just means that Index is a type that is defined on String to help manage indices.
To find the character at a particular index, you use the String type’s startIndex property. This
property yields the starting index of a string as a String.Index. You can then use this starting point in
conjunction with the advancedBy(_:) function to move forward until you arrive at the position of your
choosing.

Say you want to know the fifth character of the playground string that you created at the beginning of
this chapter.

From the Library of wu yuan

ptg16315837

Silver Challenge

63

Listing 7.11 Finding the fifth character
...
let fromStart = playground.startIndex
let toPosition = 4 // The first position is 0
let end = fromStart.advancedBy(toPosition)
let fifthCharacter = playground[end] // 'o'

You use the startIndex property on the string to get the first index of the string. This property yields
an instance of type String.Index. Next, you create a constant to hold onto the position within the
string to which you would like to advance. 4 represents the fifth character because the string is zero-
indexed (i.e., 0 is the first index).

Next, you used the advancedBy(_:) function to advance from the starting point to your desired
position. The result is a String.Index that you used to subscript your playground string instance,
which resulted in the character ‘o’. (playground, remember, is set to equal "Hello, playground".)

Ranges, like indices, depend upon the String.Index type. Imagine that you wanted to grab the first
five characters of playground. You can use the same fromStart and end constants.

Listing 7.12 Pulling out a range
...
let fromStart = playground.startIndex
let toPosition = 4
let end = fromStart.advancedBy(toPosition)
let fifthCharacter = playground[end] // 'o'
let range = fromStart...end
let firstFive = playground[range] // 'Hello'

The syntax fromStart...end creates a range of type String.Index, but it works similarly to the range
you saw in Chapter 6 for the range 1...5. You used this new range as a subscript on the playground
string. This subscript grabbed the first five characters from playground. The result is that firstFive is
a constant equal to "Hello".

Silver Challenge
Replace the "Hello" string with an instance created out of its corresponding Unicode scalars. You can
find the appropriate codes on the Internet.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

65

8
Optionals

Optionals are a special feature in Swift used to indicate that an instance may not have a value. When
you see an optional, you know one of two things about that instance: either it has a value and it is ready
for use, or it has no value. If an instance has no value associated with it, we say that it is nil.

You can use optionals with any type to signal that an instance is potentially nil. This feature
distinguishes Swift from Objective-C, which only allows objects to be nil.

This chapter covers how to declare optional types, how to use optional binding to check whether an
optional is nil and make use of its value if it has one, and how to use optional chaining to query a
sequence of optional values.

Optional Types
Optionals in Swift make the language safer. An instance that may potentially be nil should be declared
to be an optional type. This means that if an instance is not declared as an optional type, this instance is
guaranteed to not be nil. This way, the compiler knows whether an instance can be nil. This explicit
declaration makes your code more expressive and safe.

Let’s take a look at how to declare an optional type. Create a new playground and name it Optionals.
Enter the code snippet below.

Listing 8.1 Declaring an optional type
import Cocoa

var errorCodeString: String?
errorCodeString = "404"

First, you make a variable named errorCodeString to hold on to error code information in a string
format. Next, you explicitly declare the type of errorCodeString to be String – but in a slightly
different way than what you have done before. This time you put a ? at the end of String. The ? makes
errorCodeString an optional of the type String.

Now that you have declared an optional and given it a value, log the value of the optional to the
console.

Listing 8.2 Logging the value of the optional to the console
import Cocoa

var errorCodeString: String?
errorCodeString = "404"
print(errorCodeString)

From the Library of wu yuan

ptg16315837

Chapter 8 Optionals

66

Because you have given errorCodeString a value of "404," logging its value to the console works
as you have seen before. What would happen if you did not give errorCodeString a value? Try it!
Comment out the line assigning a value to errorCodeString.

Listing 8.3 Logging the nil value of the optional to the console
import Cocoa

var errorCodeString: String?
// errorCodeString = "404"
print(errorCodeString)

Checking the console, you will see that it has logged the value nil.

But logging nil to the console is not very helpful. Instead, you want to know when your variables are
nil so that you can execute code based on whether there is a value. You can use a conditional to gain
traction on a variable’s value in these circumstances.

For example, let’s say that if some operation generated an error, you would want to assign that error to
a new variable and log it to the console. Add the following code to your playground.

Listing 8.4 Adding a condition
import Cocoa

var errorCodeString: String?
// errorCodeString = "404"
print(errorCodeString)
if errorCodeString != nil {
 let theError = errorCodeString!
 print(theError)
}

Let’s look at what you did here. You set up a conditional with code that executes if errorCodeString
is not nil (remember that != means “is not equal to”).

Next, you created a new constant called theError to hold the value of errorCodeString. To do
this, you appended ! to errorCodeString. The exclamation mark here does what is called forced
unwrapping.

Forced unwrapping accesses the underlying value of the optional, which allows you to grab "404" and
assign it to the constant theError. This is called “forced” unwrapping because it tries to access the
underlying value whether or not there is actually a value there at all. That is, the ! assumes there is a
value; if there is no value, unwrapping the value in this way would lead to a runtime error.

There is some danger in forced unwrapping. If there is no value inside the optional, your program will
crash at runtime. In this case, you checked to make sure that errorCodeString was not nil, so force-
unwrapping it was not dangerous. Nonetheless, we suggest that you use force-unwrapping cautiously
and sparingly.

Finally, you logged this new constant’s value to the console.

What would have happened if you had not unwrapped errorCodeString’s value but simply assigned
the optional to the constant theError? The value of theError would still have been logged to the

From the Library of wu yuan

ptg16315837

Optional Binding

67

console correctly. So, why unwrap the optional’s value and assign it to a constant? The answer requires
a better understanding of the optional type.

If you had omitted the exclamation mark at the end of errorCodeString, you would have simply
assigned the optional String to a constant instead of the actual String value for the error code. In fact,
errorCodeString’s type is String?. String? is not the same type as String – if you have a String
variable, you cannot set it to the value of a String? without unwrapping the optional.

The optional errorCodeString was nil when it was first declared because it was given no value. In
the next line, you assigned "404" to errorCodeString. You can compare an optional value to nil to
determine whether it contains a value. In the code above, you first check whether errorCodeString
has a value; if the value is not equal to nil, you know it is safe to unwrap errorCodeString.

Creating a constant inside the conditional is a little clunky. Fortunately, there is a better way to
conditionally bind an optional’s value to a constant. It is called optional binding.

Optional Binding
Optional binding is a useful pattern to detect whether an optional contains a value. If there is a value,
then you can assign it to a temporary constant or variable and make it available within a conditional’s
first branch of execution. This can make your code more concise while also retaining its expressive
nature. Here is the basic syntax:

if let temporaryConstant = anOptional {
 // Do something with temporaryConstant
 } else {
 // There was no value in anOptional; i.e., anOptional is nil
}

With this syntax in hand, refactor the example above to make use of optional binding.

Listing 8.5 Optional binding
import Cocoa

var errorCodeString: String?
errorCodeString = "404"
if errorCodeString != nil {
 let theError = errorCodeString!
if let theError = errorCodeString {
 print(theError)
}

As you can see, the syntax for optional binding is more or less the same as the syntax using a constant
created within the conditional. The constant theError moves from the body of the conditional to its
first line. This makes theError a temporary constant that is available within the first branch of the
conditional. In other words, if there is a value within the optional, then a temporary constant is made
available for use in the block of code that is executed if the condition is evaluated as true.

Also, you no longer forcibly unwrap the optional. If the conversion is successful, then this operation is
done for you and the optional’s value is made available to you in the temporary constant you declared.
Finally, note that you could have declared theError with the var keyword if you needed to manipulate
the value inside the first branch of the conditional.

From the Library of wu yuan

ptg16315837

Chapter 8 Optionals

68

Imagine that you wanted to convert errorCodeString to its corresponding integer representation. You
could accomplish this by nesting if let bindings.

Listing 8.6 Nesting optional binding
import Cocoa

var errorCodeString: String?
errorCodeString = "404"
if let theError = errorCodeString {
 print(theError)
 if let errorCodeInteger = Int(theError) {
 print("\(theError): \(errorCodeInteger)")
 }
}

Notice that the second if let takes place within the first. Doing so makes theError available to use
in the second optional binding. Here, you use a syntax that you saw in Chapter 4 to convert between
integer types.

In the example above, you use Int(theError) to convert between the String instance in theError
to its corresponding Int. This operation can fail; for example, the string “Error!” does not naturally
translate to an integer. Therefore, Int(theError) returns an optional, in case a corresponding Int is
not found for the given string.

The result of Int(theError) is unwrapped and assigned to errorCodeInteger in the second binding.
Doing so makes the integer value available for use. You can then use both of these new constants in a
call to print() to log them to the console.

Nesting optional binding can be convoluted. While it is not too bad with just a couple of optionals,
you can imagine how complicated this strategy can get if you have several more optionals that need
unwrapping. We call deeply nested optional bindings the “Pyramid of Doom,” a reference to the many
indentation levels. Thankfully, you can unwrap multiple optionals in a single if let binding. This
feature helps to avoid the need for nesting multiple if let calls, avoiding nasty code like you saw
above (and worse).

Listing 8.7 Unwrapping multiple optionals
import Cocoa

var errorCodeString: String?
errorCodeString = "404"
if let theError = errorCodeString, errorCodeInteger = Int(theError) {
 if let errorCodeInteger = Int(theError) {
 print("\(theError): \(errorCodeInteger)")
 }
}

You now unwrap two optionals in a single line: if let theError = errorCodeString,
errorCodeInteger = Int(theError). Next, errorCodeString is unwrapped, and its value is given
to theError. You use Int(theError) to try to convert theError in an Int. Because this results
in an optional, you next unwrap that optional and bind its value to errorCodeInteger. If either of
these bindings return nil, then the success block of the conditional will not execute. In this case,
errorCodeString has a value and the theError can be successfully unwrapped because theError can
be converted into an integer.

From the Library of wu yuan

ptg16315837

Implicitly Unwrapped Optionals

69

Optional binding can even take a where clause that works very similarly to what you saw in Chapter 5.
Imagine that you only care about an error code if the value is 404. A where clause can help you to
focus on the values that you deem important.

Listing 8.8 Optional binding and where clauses
import Cocoa

var errorCodeString: String?
errorCodeString = "404"
if let theError = errorCodeString, errorCodeInteger = Int(theError)
 where errorCodeInteger == 404 {
 print("\(theError): \(errorCodeInteger)")
}

Now, the conditional evaluates to true if errorCodeInteger is equal to 404. The where clause is only
executed if both optionals are successfully unwrapped. Since theError is "404", and that string can be
converted to the integer 404, all conditions are met and the value 404 is logged to the console.

Implicitly Unwrapped Optionals
At this point it is worth mentioning implicitly unwrapped optionals, though you will not make much
use of them until we discuss classes and class initialization later. Implicitly unwrapped optionals are
like regular optional types, but with one important difference: you do not need to unwrap them. How
is that the case? It has to do with how you declare them. Take a look at the code below, which refactors
the example above to work with an implicitly unwrapped optional.

import Cocoa

var errorCodeString: String!
errorCodeString = "404"
print(errorCodeString)

Here, the optional is declared with the !, which signifies that it is an implicitly unwrapped optional.
The conditional is removed because using an implicitly unwrapped optional signifies a great deal more
confidence than its more humble counterpart. Indeed, much of the power and flexibility associated with
the implicitly unwrapped optional is related to the idea that you do not need to unwrap it to access its
value.

Note, however, that this power and flexibility comes with some danger: accessing the value of an
implicitly unwrapped optional will result in a runtime error if it does not have a value. For this reason,
we suggest that you do not use the implicitly unwrapped optional if you believe that the instance has
any chance of becoming nil. Using implicitly unwrapped optionals is best limited to somewhat special
cases. As we indicated, the primary case concerns class initialization, which we will discuss in detail in
Chapter 17. For now, you know enough of the basics of implicitly unwrapped optionals to understand
what is going on if you find them in the wild.

From the Library of wu yuan

ptg16315837

Chapter 8 Optionals

70

Optional Chaining
Like optional binding, optional chaining provides a mechanism for querying an optional to determine
whether it contains a value. One important difference between the two is that optional chaining allows
the programmer to chain numerous queries into an optional’s value. If each optional in the chain
contains a value, then the call to each succeeds, and the entire query chain will return an optional of the
expected type. If any optional in the query chain is nil, then the entire chain will return nil.

Let’s begin with a concise example. Imagine that your app has a custom error code for some reason.
If you encounter a 404, you actually want to use your customized error code instead. Afterward, you
will want to add some more descriptive text to an error description you will display to the user. Add the
following to your playground.

Listing 8.9 Optional chaining
var errorCodeString: String?
errorCodeString = "404"
var errorDescription: String?
if let theError = errorCodeString, errorCodeInteger = Int(theError)
 where errorCodeInteger == 404 {
 print("\(theError): \(errorCodeInteger)")
 errorDescription = ("\(errorCodeInteger + 200):
 the requested resource was not found.")
}

var upCaseErrorDescription = errorDescription?.uppercaseString
errorDescription

You added a new var named errorDescription. Inside of the if-let success block, you created
a new interpolated string and assigned that instance to errorDescription. When you created the
interpolated string (\(errorCodeInteger + 200):), you increased 404 to your custom error code
value of 604 (this is arbitrary, and theoretically unique to your app). Last, you added some more
informative text about the error.

Next, you used optional chaining to create a new instance of the error description to be in all uppercase
text, perhaps to indicate its urgency. This instance is called upCaseErrorDescription. The question
mark appended to the end of errorDescription signals that this line of code initiates the optional
chaining process. If there is no value in errorDescription, then there is no string to uppercase. In that
case, upCaseErrorDescription would be set to nil. This point demonstrates that optional chaining
will return an optional.

Because errorDescription does have a value in it, you uppercased the description and reassigned that
new value to upCaseErrorDescription. The results sidebar should display the updated value: “604:
THE REQUESTED RESOURCE WAS NOT FOUND.”

From the Library of wu yuan

ptg16315837

Modifying an Optional in Place

71

Modifying an Optional in Place
You can modify an optional “in place.” Add a call to appendContentsOf(_:) on
upCaseErrorDescription.

Listing 8.10 Modifying in place
...
upCaseErrorDescription?.appendContentsOf(" PLEASE TRY AGAIN.")
upCaseErrorDescription

Modifying an optional in place can be extremely helpful. In this case, all we wanted to do was update
a string inside of an optional. We did not need anything returned. If there was a value inside of the
optional, then we wanted to add some text to the string. If there was no value, then we did not want to
do anything.

This is exactly what modifying an optional in place does. The ? at the end of
upCaseErrorDescription works similarly to optional chaining insofar as it exposes the value of the
optional to us if it exists. If upCaseErrorDescription were nil, then the optional would not have been
modified because no value existed to update.

It is worth mentioning that you can also use the ! operator in the code above. This operation
would forcibly unwrap the optional – which can be dangerous, as you have learned. If
upCaseErrorDescription were nil, then upCaseErrorDescription!.appendContentsOf(" PLEASE
TRY AGAIN.") would lead to a runtime crash.

As you have read above, it is best to use ? most of the time. The ! operator should be used when you
know that the optional will not be nil or that the only reasonable action to take is to crash if the optional
is nil.

The Nil Coalescing Operator
A common operation when dealing with optionals is to either get the value (if the optional contains
value) or to use some default value if the optional is nil. For example, when pulling out the error
information inside of errorDescription, you might want to default to “No error” if the string does not
contain an error. You could accomplish this with optional binding.

Listing 8.11 Using optional binding to parse errorCodeString
...
let description: String
if let errorDescription = errorDescription {
 description = errorDescription
} else {
 description = "No error"
}

From the Library of wu yuan

ptg16315837

Chapter 8 Optionals

72

There is a problem with this technique. You had to write a lot of code for what should be a simple
operation: get the value from the optional or use “No error” if the optional was nil. This can be solved
via the nil coalescing operator: ??. Let’s see what that looks like.

Listing 8.12 Using the nil coalescing operator
...
let description: String
if let errorDescription = errorDescription {
 description = errorDescription
} else {
 description = "No error"
}

let description = errorDescription ?? "No error"

The lefthand side of ?? must be an optional – errorDescription in this case, which is an optional
String. The righthand side must be a nonoptional of the same type – “No error” in your case, which is
a String. If the lefthand side optional is nil, ?? returns the righthand side. If the lefthand side optional
is not nil, ?? returns the value contained in the optional.

Try changing errorDescription so that it does not contain an error, and confirm that description
gets the value “No error”:

Listing 8.13 Changing errorCodeString
...
errorDescription = nil
let description = errorDescription ?? "No error"

This chapter was fairly involved. You learned a lot of new material. Optionals are a new topic
regardless of your level of experience in Mac or iOS development. They are also a powerful feature of
Swift.

As a developer, you will often need to represent nil in an instance. Optionals help you keep track of
whether instances are nil and provide a mechanism to respond appropriately.

If optionals do not quite feel comfortable yet, do not worry. You will be seeing them quite a bit in
future chapters.

Silver Challenge
Earlier in the chapter we told you that accessing an optional’s value when it is nil will result in a
runtime error. Make this mistake by force-unwrapping an optional when it is nil. Next, examine the
error and understand what the error is telling you.

From the Library of wu yuan

ptg16315837

Part III
Collections and Functions

As a programmer, you will often have a collection of related values that you need to keep together.
Collections in Swift help you do this, and this part of the book will introduce you to Swift’s different
collection options.

Swift provides functions to help developers transform data into something meaningful for the user or
accomplish some other task. These chapters also describe how to use the system functions provided by
the Swift language as well as how to create your own functions to accomplish your goals.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

75

9
Arrays

An important task in programming is to group together logically related values. For example, imagine
your application keeps lists of a user’s friends, favorite books, travel locations, and so on. It is often
necessary to be able to keep those values together and pass them around your code. Collections make
these operations convenient.

Swift has a number of collection types. The first we will cover is called an Array.

Arrays are an ordered collection of values. Each position in an array is identified by an index, and any
value can appear multiple times in an array. Arrays are typically used when the order of the values
is important or useful to know, but it is not a prerequisite that the order of the values be meaningful.
Unlike in Objective-C, Swift’s Array type can hold on to any sort of value – objects and nonobjects
alike.

To get started, create a new Swift playground called Arrays.

Creating an Array
In this chapter, you will create an array that represents your bucket list: the things that you would like
to do in the future. Create Arrays.playground and declare an array.

Listing 9.1 Creating an array
import Cocoa

var bucketList: Array<String>

Here, you create a new variable called bucketList that is of the type Array. Much of that syntax
should look familiar. For example, the var keyword means that bucketList is a variable. This means
that bucketList is mutable, so the array can be changed. There are also immutable arrays, which we
will discuss later in this chapter.

What is probably new in the syntax is <String>. This code tells bucketList what sort of instances it
can accept. Here, your array will accept instances of the String type. Arrays can hold instances of any
type. Because this array will hold information concerning your future goals, it makes sense that it takes
instances of String.

From the Library of wu yuan

ptg16315837

Chapter 9 Arrays

76

There is an alternative syntax for declaring an array. Make the following change in your playground.

Listing 9.2 Changing the syntax
import Cocoa

var bucketList: Array<String>
var bucketList: [String]

Here, the brackets identify bucketList as an instance of Array, and the String syntax tells
bucketList what sort of values it can accept.

Your bucketList is only declared. It is not yet initialized. This means that it is not yet ready to accept
instances of the String type. If you were to try to append an item to your bucketList, you would get
an error saying that you are trying to add something before your bucketList is initialized.

Change your declaration of bucketList to initialize the array in the same line.

Listing 9.3 Initializing the array
import Cocoa

var bucketList: [String] = ["Climb Mt. Everest"]

You use the assignment operator = in conjunction with the Array literal syntax ["Climb Mt.
Everest"]. An Array literal is a shorthand syntax that initializes an array with whatever instances you
include. In this case, you initialize bucketList with the bucket item to climb Mt. Everest.

As with other types, you can create an instance of Array by taking advantage of Swift’s type inference
capabilities. Remove the type declaration from your code to use type inference.

Listing 9.4 Using type inference
import Cocoa

var bucketList: [String]= ["Climb Mt. Everest"]

Nothing has really changed. Your bucket list still contains the same item, and it still will only accept
instances of the String type. The only difference is that it now infers this based on the type of the
instance used to initialize it. If you were to try to add an integer to this array, you would see an error
telling you that you cannot add an instance of Int to your array because it is expecting instances of the
String type.

Now that you know how to create and initialize an array, it is time to learn how to access and modify
your array’s elements.

From the Library of wu yuan

ptg16315837

Accessing and Modifying Arrays

77

Accessing and Modifying Arrays
So, you have a bucket list? Great! Sadly, you do not have all that many ambitions in there yet. But you
are an interesting person with a zeal for life, so let’s add some values to your bucketList. Update your
list with another ambition.

Listing 9.5 Hot air balloon adventure
import Cocoa

var bucketList = ["Climb Mt. Everest"]
bucketList.append("Fly hot air balloon to Fiji")

You are using append(_:) to add a value to bucketList. The append(_:) function takes an argument
of whatever type an array accepts and makes it a new element in the array.

Your playground should look like Figure 9.1.

Figure 9.1 Appending to your bucket list

Add more future adventures to your bucket list using the append(_:) function.

Listing 9.6 So many ambitions!
import Cocoa

var bucketList = ["Climb Mt. Everest"]
bucketList.append("Fly hot air balloon to Fiji")
bucketList.append("Watch the Lord of the Rings trilogy in one day")
bucketList.append("Go on a walkabout")
bucketList.append("Scuba dive in the Great Blue Hole")
bucketList.append("Find a triple rainbow")

Now you have six items in bucketList. But what if you have a change of heart? Or – thinking
positively – what happens when you accomplish one of the items on your list?

From the Library of wu yuan

ptg16315837

Chapter 9 Arrays

78

Suppose last weekend you settled in and spent 10 hours watching the Lord of the Rings series. Now it
is time to take that item off your list. Remove it with the function removeAtIndex(_:).

Listing 9.7 Removing an item from the array

import Cocoa

var bucketList = ["Climb Mt. Everest"]
bucketList.append("Fly hot air balloon to Fiji")
bucketList.append("Watch the Lord of the Rings trilogy in one day")
bucketList.append("Go on a walkabout")
bucketList.append("Scuba dive in the Great Blue Hole")
bucketList.append("Find a triple rainbow")
bucketList.removeAtIndex(2)
bucketList

To confirm that the value in the second index was removed from your bucketList, highlight the final
line (bucketList) in the results sidebar and click the button that looks like an eye. This is called the
quick look (Figure 9.2). The count of items in your array is now 5. The item formerly at the second
index – your movie marathon – is gone. "Go on a walkabout" now occupies the second index.

(Why is the item at the second index not the hot air balloon voyage? Arrays are zero-indexed, so
bucketList[0] is equal to "Climb Mt. Everest".)

Figure 9.2 Removing an item from your bucket list

Having spent last weekend on a movie marathon, you decide to go out this weekend. You are at a
party, and the topic of bucket lists comes up. As you begin to share your ambitious goals, the crowd’s
collective jaw starts to drop. “Just how many things do you want to do?” someone gasps.

No problem! It is easy to find the number of items in an array. Arrays keep track of the number of
items in them via the count property. Use it to print the number of bucket list items you have to the
console.

From the Library of wu yuan

ptg16315837

Accessing and Modifying Arrays

79

Listing 9.8 Counting items in the array
import Cocoa

var bucketList = ["Climb Mt. Everest"]
bucketList.append("Fly hot air balloon to Fiji")
bucketList.append("Watch the Lord of the Rings trilogy in one day")
bucketList.append("Go on a walkabout")
bucketList.append("Scuba dive in the Great Blue Hole")
bucketList.append("Find a triple rainbow")
bucketList.removeAtIndex(2)
bucketList
print(bucketList.count)

“Five,” the crowd gasps. “That is a lot of things to do!” Since the party is winding down, and everyone
needs to go home and rethink their personal bucket lists, they beg you to tell them just your top three.
You can easily do this using subscripting, which allows you to access specific indices in your array.

Listing 9.9 Subscripting to find your top three items
import Cocoa

var bucketList = ["Climb Mt. Everest"]
bucketList.append("Fly hot air balloon to Fiji")
bucketList.append("Watch the Lord of the Rings trilogy in one day")
bucketList.append("Go on a walkabout")
bucketList.append("Scuba dive in the Great Blue Hole")
bucketList.append("Find a triple rainbow")
bucketList.removeAtIndex(2)
bucketList
print(bucketList.count)
print(bucketList[0...2])

The bracket syntax ([0...2]) is the subscripting syntax. Notice that your first three items print to the
console. (You can also use the same basic syntax to log a single item, such as print(bucketList[2]).)

Subscripting is a powerful feature. Say that during your conversation someone asks, “Where do you
want to do your walkabout?” The question makes you realize that you need some specifics. After all,
you do not want to go on a walkabout just anywhere. Only a walkabout in Australia will do. You can
use subscripting to change an item at a particular index (or range of indices).

Listing 9.10 Using subscripting to append new information
import Cocoa

var bucketList = ["Climb Mt. Everest"]
bucketList.append("Fly hot air balloon to Fiji")
bucketList.append("Watch the Lord of the Rings trilogy in one day")
bucketList.append("Go on a walkabout")
bucketList.append("Scuba dive in the Great Blue Hole")
bucketList.append("Find a triple rainbow")
bucketList.removeAtIndex(2)
bucketList
print(bucketList.count)
print(bucketList[0...2])
bucketList[2] += " in Australia"
bucketList

From the Library of wu yuan

ptg16315837

Chapter 9 Arrays

80

You use the += addition and assignment operator to add some text to the item at index 2. This
assignment works because the instance at index 2 is of the same type as the instance you added to it –
"Go on a walkabout" and " in Australia" are both of the String type. Thus, you change the value
at index 2 to be: "Go on a walkabout in Australia".

Thinking about all of these adventures has gotten you excited, and now you are having trouble
sleeping. Since reading usually helps, you start to read up on climbing Mt. Everest. You discover that it
is pretty dangerous, so you decide to update your top bucket item with a slightly less ambitious goal.

Listing 9.11 Replacing an array item

import Cocoa

var bucketList = ["Climb Mt. Everest"]
bucketList.append("Fly hot air balloon to Fiji")
bucketList.append("Watch the Lord of the Rings trilogy in one day")
bucketList.append("Go on a walkabout")
bucketList.append("Scuba dive in the Great Blue Hole")
bucketList.append("Find a triple rainbow")
bucketList.removeAtIndex(2)
print(bucketList.count)
print(bucketList[0...2])
bucketList[2] += " in Australia"
bucketList[0] = "Climb Mt. Kilimanjaro"
bucketList

There! That is better. Now your top bucket list item is safer, but still quite adventurous.

While you are now happy with the content of your bucket list, you might not be all that happy that you
had to type bucketList.append(_:) five times. You think to yourself, “There has to be a better way!”

And then you remember something: “I know how to use loops! What if I made an array of all the
bucket list items I want to add? Then I could loop through that array and use append(_:) each time the
loop iterates. I would only have to type bucketList.append(_:) one time!”

And this is exactly what you do.

From the Library of wu yuan

ptg16315837

Accessing and Modifying Arrays

81

Listing 9.12 Using a loop to append items from one array to another

import Cocoa

var bucketList = ["Climb Mt. Everest"]
bucketList.append("Fly hot air balloon to Fiji")
bucketList.append("Watch the Lord of the Rings trilogy in one day")
bucketList.append("Go on a walkabout")
bucketList.append("Scuba dive in the Great Blue Hole")
bucketList.append("Find a triple rainbow")
var newItems = [
 "Fly hot air balloon to Fiji",
 "Watch the Lord of the Rings trilogy in one day",
 "Go on a walkabout",
 "Scuba dive in the Great Blue Hole",
 "Find a triple rainbow"
]

for item in newItems {
 bucketList.append(item)
}
bucketList.removeAtIndex(2)
print(bucketList.count)
print(bucketList[0...2])
bucketList[2] += " in Australia"
bucketList[0] = "Climb Mt. Kilimanjaro"
bucketList

You create an array for the bucket list items that you want to add, called newItems. Next, you make a
for-in loop that iterates through each item in the array and appends it to your bucketList. You use
the item variable in the local scope of the loop to append it to your bucket list array.

You are about to fall asleep, happy in how you have refactored your code to make it more concise and
keep it just as expressive – but then a bolt of inspiration strikes.

“That is pretty good,” you think. “But I think I can do better. Maybe I can use the addition and
assignment operator!” Indeed you can. Just as you can use += to add one integer to another, you can
use it to add one array to another.

From the Library of wu yuan

ptg16315837

Chapter 9 Arrays

82

Listing 9.13 Refactoring with the addition and assignment operator
import Cocoa

var bucketList = ["Climb Mt. Everest"]
var newItems = [
 "Fly hot air balloon to Fiji",
 "Watch the Lord of the Rings trilogy in one day",
 "Go on a walkabout",
 "Scuba dive in the Great Blue Hole",
 "Find a triple rainbow"
]
for item in newItems {
 bucketList.append(item)
}
bucketList += newItems
bucketList
bucketList.removeAtIndex(2)
print(bucketList.count)
print(bucketList[0...2])
bucketList[2] += " in Australia"
bucketList[0] = "Climb Mt. Kilimanjaro"
bucketList

The += operator makes for an easy way to add your array of new items to your existing bucket list.

Finally, suppose you decide on a new goal – tobogganing across Alaska – that is more important
than going on walkabout in Australia but less important than flying a hot air balloon to Fiji. Use the
insert(_:atIndex:) function to add a new element to your array at a specified index.

Listing 9.14 Inserting a new ambition
import Cocoa

var bucketList = ["Climb Mt. Everest"]
var newItems = [
 "Fly hot air balloon to Fiji",
 "Watch the Lord of the Rings trilogy in one day",
 "Go on a walkabout",
 "Scuba dive in the Great Blue Hole",
 "Find a triple rainbow"
]
bucketList += newItems
bucketList
bucketList.removeAtIndex(2)
print(bucketList.count)
print(bucketList[0...2])
bucketList[2] += " in Australia"
bucketList[0] = "Climb Mt. Kilimanjaro"
bucketList.insert("Toboggan across Alaska", atIndex: 2)
bucketList

The insert(_:atIndex:) function has two arguments. The first argument takes the instance to add
to the array. (Recall that your array takes String instances.) The second argument takes the index for
where you would like to add the new element in the array.

With your list fully formed, you lay your head down and dream of flying hot air balloons to mountain
islands.

From the Library of wu yuan

ptg16315837

Array Equality

83

Array Equality
The next morning you wake up and go to your neighborhood coffee shop. There, you meet a friend,
named Myron, who had been at the party with you. Myron was inspired by your bucketList and
decided to make his own bucket list modeled after yours. He went home after the party and wrote out
all of your items, and now he wants to make sure that he got everything correct.

After updating Myron with the changes you made after the party, it is time to compare your arrays of
bucket list items to ensure that they are the same. Use == to check for equality.

Listing 9.15 Checking two arrays for equality
import Cocoa

var bucketList = ["Climb Mt. Everest"]
var newItems = [
 "Fly hot air balloon to Fiji",
 "Watch the Lord of the Rings trilogy in one day",
 "Go on a walkabout",
 "Scuba dive in the Great Blue Hole",
 "Find a triple rainbow"
]
bucketList += newItems
bucketList
bucketList.removeAtIndex(2)
print(bucketList.count)
print(bucketList[0...2])
bucketList[2] += " in Australia"
bucketList[0] = "Climb Mt. Kilimanjaro"
bucketList.insert("Toboggan across Alaska", atIndex: 2)
bucketList

var myronsList = [
 "Climb Mt. Kilimanjaro",
 "Fly hot air balloon to Fiji",
 "Toboggan across Alaska",
 "Go on a walkabout in Australia",
 "Find a triple rainbow",
 "Scuba dive in the Great Blue Hole"
]

let equal = (bucketList == myronsList)

Since the contents of both arrays are the same, you might expect equal to be set to true. Yet, equal
was determined to be false. Why?

From the Library of wu yuan

ptg16315837

Chapter 9 Arrays

84

Remember that arrays are ordered. That means two arrays that have the same values are not equal if the
ordering is different, and myronsList places "Find a triple rainbow" higher than your list does. Put
this goal at the end of myronsList to make the two lists equal.

Listing 9.16 Fixing myronsList
import Cocoa

var bucketList = ["Climb Mt. Everest"]
var newItems = [
 "Fly hot air balloon to Fiji",
 "Watch the Lord of the Rings trilogy in one day",
 "Go on a walkabout",
 "Scuba dive in the Great Blue Hole",
 "Find a triple rainbow"
]
bucketList += newItems
bucketList
bucketList.removeAtIndex(2)
print(bucketList.count)
print(bucketList[0...2])
bucketList[2] += " in Australia"
bucketList[0] = "Climb Mt. Kilimanjaro"
bucketList.insert("Toboggan across Alaska", atIndex: 2)
bucketList

var myronsList = [
 "Climb Mt. Kilimanjaro",
 "Fly hot air balloon to Fiji",
 "Toboggan across Alaska",
 "Go on a walkabout in Australia",
 "Find a triple rainbow",
 "Scuba dive in the Great Blue Hole",
 "Find a triple rainbow"
]

let equal = (bucketList == myronsList)

Immutable Arrays
You have been doing a lot of tinkering with your bucket list array. But you can also create an array that
cannot be changed. You use immutable arrays for these cases. Here is how.

Let’s say you are making an application that allows users to keep track of the lunches they eat each
week. Among other things, users will log what they ate and generate reports at a later time. You decide
to put these meals in an immutable array to generate the reports. After all, it does not make sense to
change last week’s lunches after they have been eaten.

From the Library of wu yuan

ptg16315837

Documentation

85

Create an immutable array and initialize it with a week’s worth of lunches.

Listing 9.17 An immutable array
...
var myronsList = [
 "Climb Mt. Kilimanjaro",
 "Fly hot air balloon to Fiji",
 "Toboggan across Alaska",
 "Go on a walkabout in Australia",
 "Scuba dive in the Great Blue Hole",
 "Find a triple rainbow"
]

let equal = (bucketList == myronsList)
let lunches = [
 "Cheeseburger",
 "Veggie Pizza",
 "Chicken Caesar Salad",
 "Black Bean Burrito",
 "Falafel wrap"
]

You use the let keyword to create an immutable array. If you were to try to modify the array in any
way, the compiler would issue an error stating that you cannot mutate an immutable array. If you even
try to reassign a new array to lunches, you would get an error from the compiler telling you that you
cannot reassign an instance to a constant created via the let keyword.

Documentation
The documentation for any programming language is an indispensable resource, and Swift’s is no
exception.

Open the documentation that shipped with Xcode by clicking Help → Documentation and API
Reference at the top. See Figure 9.3.

Figure 9.3 Help menu

From the Library of wu yuan

ptg16315837

Chapter 9 Arrays

86

A new window will open. In the search bar at the top, type in “Array” and hit “Return” on your
keyboard. This will open the documentation for Swift’s Array type, as in Figure 9.4.

Figure 9.4 Opening the documentation

Take some time and explore the documentation for Array. Get to know the organization of the
documentation, and you will save yourself a lot of time in the future. You will be visiting these pages
regularly.

Bronze Challenge
Look at the array below.

var toDoList = ["Take out garbage", "Pay bills", "Cross off finished items"]

Use the documentation to locate a var defined on the Array type that will tell you whether toDoList
has any elements inside of it.

Silver Challenge
Enter the array from the bronze challenge in your playground. Use a loop to reverse the order of the
elements of this array. Log the results to the console. Finally, examine the documentation to see if there
is a more convenient way to do this operation.

From the Library of wu yuan

ptg16315837

87

10
Dictionaries

In the previous chapter, you became familiar with Swift’s Array type. The Array type is a useful
collection when the order of the elements in the collection is important.

But order is not always important. Sometimes you simply want to hold on to a set of information in a
container and then retrieve the information as needed. That is what dictionaries are for.

A Dictionary is a collection type that organizes its content by key-value pairs. The keys in a dictionary
map onto values. A key is like the ticket you give to the attendant at a coat check. You hand your
ticket over, and the attendant uses it to find your coat. Similarly, you give a key to an instance of the
Dictionary type, and it returns to you the value associated with that key.

The keys in a Dictionary must be unique. This requirement means that every key will uniquely map
onto its value. To continue the coat check metaphor, a coat check might have several navy blue coats.
So long as each coat has its own ticket, then you will be sure that the attendant will be able to find your
navy blue coat when you return with your ticket. In short, you use a dictionary when you want to store
and retrieve information with a specific key.

In this chapter, you will see how to:

• create and initialize a dictionary

• loop through dictionaries

• access and modify dictionaries via their keys

You will also learn more about keys and how they work, especially as they pertain to Swift. Last, you
will see how to create arrays out of your dictionary’s keys and values.

Creating a Dictionary
The general syntax to create a Swift dictionary is as follows: var dict: Dictionary<KeyType,
ValueType>. This code creates a mutable instance of the Dictionary type called dict. The
declarations for what types the dictionary’s keys and values accept are inside the angle brackets (<>),
denoted here by KeyType and ValueType.

The only requirement for Swift’s Dictionary type’s keys is that the key must be hashable. That means
that each KeyType must provide a mechanism that allows Dictionary to guarantee that any given key
is unique. Swift’s basic types, such as String, Int, Float, Double, and Bool are all hashable.

From the Library of wu yuan

ptg16315837

Chapter 10 Dictionaries

88

Before you begin typing code, let’s take a look at the different ways you can get an instance of
Dictionary.

var dict1: Dictionary<String, Double> = [:]
var dict2 = Dictionary<String, Double>()
var dict3: [String:Double] = [:]
var dict4 = [String:Double]()

Each of these four options yields the same result: a fully initialized instance of the Dictionary type
with type information associated with its future keys and values. The KeyType is set to accept keys of
the String type, and the ValueType is set to accept values of the Double type. In all four cases, the
dictionary instance is empty: it has no keys and no values.

What is the difference between the [:] and the () syntax? They are essentially the same. They both
create and prepare an instance of the Dictionary type. The [:] code uses the literal syntax to create
an empty instance of the Dictionary type that will use the type information for its keys and values
provided in its declaration. For example, dict1 specifies its type and then is initialized to be an empty
dictionary. The () syntax uses the default initializer for the Dictionary type, which will prepare an
empty dictionary instance. You will see more about initializers later in the book.

It is useful to take advantage of Swift’s type inference capabilities. Type inference makes for more
concise code that is just as expressive. Accordingly, you will stick with type inference in this chapter.

Populating a Dictionary
To get started, create a new playground called Dictionary.playground. Declare a dictionary called
movieRatings and use type inference to initialize it with some data.

Listing 10.1 Creating a dictionary
import Cocoa

var movieRatings = ["Donnie Darko": 4, "Chungking Express": 5, "Dark City": 4]

You created a mutable dictionary using the Dictionary literal syntax. Your dictionary will hold movie
ratings. Its keys are instances of the String type and represent individual movies. These keys map onto
values that are instances of the Int type that represent individual ratings of the movies.

Accessing and Modifying a Dictionary
Now that you have a mutable dictionary, how do you work with it? You will want to read from and
modify the dictionary. Begin by using count to get some useful information about your dictionary.

Listing 10.2 Using count
import Cocoa

var movieRatings = ["Donnie Darko": 4, "Chungking Express": 5, "Dark City": 4]
print("I have rated \(movieRatings.count) movies.")

From the Library of wu yuan

ptg16315837

Accessing and Modifying a Dictionary

89

count is a read-only property on the Dictionary type that keeps track of how many instances are held
within the dictionary instance itself. We will discuss properties in detail in Chapter 16, but for now
properties are variables on a type that store or compute some data about the type in which you are
interested. In this case, you use count to log to the console: I have rated 3 movies.

Now let’s read a value from the movieRatings dictionary.

Listing 10.3 Reading a value from the dictionary
import Cocoa

var movieRatings = ["Donnie Darko": 4, "Chungking Express": 5, "Dark City": 4]
print("I have rated \(movieRatings.count) movies.")
let darkoRating = movieRatings["Donnie Darko"]

You access values from a dictionary by supplying the key associated with the value you would like to
retrieve. In the example above, you supply the key "Donnie Darko" to the dictionary of movie ratings.
darkoRating is now set to be equal to 4.

Option-click on the darkoRating instance. Its type is Int?, but movieRatings has type [String:
Int]. Why the discrepancy? The Dictionary type needs a way to tell you that the value you asked
for is not present. For example, you have not rated Braveheart yet, so this: let braveheartRating =
movieRatings["Braveheart"] would result in braveheartRating having type Int? and being set to
nil.

You subscripted movieRatings above using brackets: movieRatings["Donnie Darko"]. This syntax
asks the dictionary for the value associated with the String key "Donnie Darko". Whenever you
subscript a Dictionary instance for a given key, the dictionary will return an optional matching the
type of the Dictionary’s values. In this case, subscripting movieRatings for a given key will return an
Int? (an optional Int).

Next, you will modify a value in your dictionary of movie ratings.

Listing 10.4 Modifying a value
import Cocoa

var movieRatings = ["Donnie Darko": 4, "Chungking Express": 5, "Dark City": 4]
print("I have rated \(movieRatings.count) movies.")
let darkoRating = movieRatings["Donnie Darko"]
movieRatings["Dark City"] = 5
movieRatings

As you can see, the value associated with the key "Dark City" is now equal to 5.

There is another useful way to update values associated with a dictionary’s keys: the
updateValue(_:forKey:) method. It takes two arguments: value: ValueType, forKey: KeyType.
The first argument, value, takes the new value. The second argument, forKey, specifies the key whose
value you would like to change.

This method is useful because it gives you a handle on the last value to which the key mapped.
There is one small caveat: updateValue(_:forKey:) returns an optional. This return type is handy
because the key may not exist in the dictionary. Therefore, it is helpful to assign the return of the
updateValue(_:forKey:) method to an optional of the type that you are expecting and use optional
binding to gain access to the key’s old value. Let’s see this in action.

From the Library of wu yuan

ptg16315837

Chapter 10 Dictionaries

90

Listing 10.5 Updating a value
import Cocoa

var movieRatings = ["Donnie Darko": 4, "Chungking Express": 5, "Dark City": 4]
print("I have rated \(movieRatings.count) movies.")
let darkoRating = movieRatings["Donnie Darko"]
movieRatings["Dark City"] = 5
movieRatings
let oldRating: Int? = movieRatings.updateValue(5, forKey: "Donnie Darko")
if let lastRating = oldRating, currentRating = movieRatings["Donnie Darko"] {
 print("Old rating: \(lastRating); current rating: \(currentRating)")
}

Figure 10.1 shows the old and new values for Donnie Darko’s rating in the results sidebar.

Figure 10.1 The updated value

Adding and Removing Values
Now that you have seen how to update a value, let’s look at how you can update the key-value pairs in
your dictionary by adding or removing a value. Begin by adding a value.

Listing 10.6 Adding a value
import Cocoa

var movieRatings = ["Donnie Darko": 4, "Chungking Express": 5, "Dark City": 4]
print("I have rated \(movieRatings.count) movies.")
let darkoRating = movieRatings["Donnie Darko"]
movieRatings["Dark City"] = 5
movieRatings
let oldRating: Int? = movieRatings.updateValue(5, forKey: "Donnie Darko")
if let lastRating = oldRating {
 print(lastRating)
}
movieRatings["The Cabinet of Dr. Caligari"] = 5

From the Library of wu yuan

ptg16315837

Adding and Removing Values

91

Here, you add a new key-value pair to your dictionary using this syntax: movieRatings["The Cabinet
of Dr. Caligari"] = 5. You use the assignment operator to associate a value (in this case, 5) with
the new key (“The Cabinet of Dr. Caligari”).

Next, remove the entry for Dark City.

Listing 10.7 Removing a value
import Cocoa

var movieRatings = ["Donnie Darko": 4, "Chungking Express": 5, "Dark City": 4]
print("I have rated \(movieRatings.count) movies.")
let darkoRating = movieRatings["Donnie Darko"]
movieRatings["Dark City"] = 5
movieRatings
let oldRating: Int? = movieRatings.updateValue(5, forKey: "Donnie Darko")
if let lastRating = oldRating {
 print(lastRating)
}
movieRatings["The Cabinet of Dr. Caligari"] = 5
movieRatings.removeValueForKey("Dark City")

The method removeValueForKey(_:) takes a key as an argument and removes the key-value pair that
matches what you provide. Now, movieRatings has no entry for Dark City.

Additionally, this method returns the value the key was associated with, if the key is found and
removed successfully. However, you do not have to assign the return value of this method to anything.
If the key is found in the dictionary, then the key-value pair is removed regardless of whether you
assign the old value to anything.

In the example above, you could have typed: let removedRating: Int? =
movieRatings.removeValueForKey("Dark City"). Because removeValueForKey(_:) returns an
optional of the type that was removed, removedRating is an optional Int. Placing the old value in a
variable or constant like this can be handy if you need to do something with the old value.

You can also remove a key-value pair by setting a key’s value to nil.

Listing 10.8 Setting the key’s value to nil
import Cocoa

var movieRatings = ["Donnie Darko": 4, "Chungking Express": 5, "Dark City": 4]
print("I have rated \(movieRatings.count) movies.")
let darkoRating = movieRatings["Donnie Darko"]
movieRatings["Dark City"] = 5
movieRatings
let oldRating: Int? = movieRatings.updateValue(5, forKey: "Donnie Darko")
if let lastRating = oldRating {
 print(lastRating)
}
movieRatings["The Cabinet of Dr. Caligari"] = 5
movieRatings.removeValueForKey("Dark City")
movieRatings["Dark City"] = nil

The result is essentially the same, but this strategy does not return the removed key’s value.

From the Library of wu yuan

ptg16315837

Chapter 10 Dictionaries

92

Looping
You can use a for-in to loop through a dictionary. Swift’s Dictionary type provides a convenient
mechanism to loop through an instance’s key-value pair for each entry. This mechanism breaks each
entry into its constituent parts by providing temporary constants representing the key and the value.
These constants are placed within a tuple that the for-in loop can access inside of its body.

Listing 10.9 Looping through your dictionary
import Cocoa

var movieRatings = ["Donnie Darko": 4, "Chungking Express": 5, "Dark City": 4]
print("I have rated \(movieRatings.count) movies.")
let darkoRating = movieRatings["Donnie Darko"]
movieRatings["Dark City"] = 5
movieRatings
let oldRating: Int? = movieRatings.updateValue(5, forKey: "Donnie Darko")
if let lastRating = oldRating {
 print(lastRating)
}
movieRatings["The Cabinet of Dr. Caligari"] = 5
movieRatings["Dark City"] = nil
for (key, value) in movieRatings {
 print("The movie \(key) was rated \(value).")
}

Notice how you use string interpolation to combine the values of key and value into a single string.
Open up the assistant editor to view the console. You should see that each movie and its rating was
logged to the console.

You do not have to access both the key and the value of each entry. A Dictionary has properties for its
keys and values that can be accessed separately if you only need the information from one.

Listing 10.10 Just the keys, please
import Cocoa

var movieRatings = ["Donnie Darko": 4, "Chungking Express": 5, "Dark City": 4]
print("I have rated \(movieRatings.count) movies.")
let darkoRating = movieRatings["Donnie Darko"]
movieRatings["Dark City"] = 5
movieRatings
let oldRating: Int? = movieRatings.updateValue(5, forKey: "Donnie Darko")
if let lastRating = oldRating {
 print(lastRating)
}
movieRatings["The Cabinet of Dr. Caligari"] = 5
movieRatings["Dark City"] = nil
for (key, value) in movieRatings {
 print("The movie \(key) was rated: \(value).")
}
for movie in movieRatings.keys {
 print("User has rated \(movie).")
}

This new loop will iterate through movieRatings’s keys and log each movie the user has rated to the
console.

From the Library of wu yuan

ptg16315837

Immutable Dictionaries

93

Immutable Dictionaries
Creating an immutable dictionary works much the same as creating an immutable array. You use the
let keyword to tell the Swift compiler that you do not want your instance of Dictionary to change.
Create an immutable dictionary that lists the track names of a short fictional album along with each
track’s length in seconds.

Listing 10.11 Creating an immutable dictionary
...
let album = ["Diet Roast Beef": 268,
 "Dubba Dubbs Stubs His Toe": 467,
 "Smokey's Carpet Cleaning Service": 187,
 "Track 4": 221]

The track names are the keys and the track lengths are the values. If you try to change this dictionary,
the compiler will give you an error and prevent the change. (Go ahead and try it!)

Translating a Dictionary to an Array
Sometimes it is helpful to pull information out of a dictionary and put it into an array. Suppose, for
example, that you want to list all of the movies that have been rated (without their ratings).

In this case, it makes sense to create an instance of the Array type with the keys from your dictionary.

Listing 10.12 Sending keys to an array
import Cocoa

var movieRatings = ["Donnie Darko": 4, "Chungking Express": 5, "Dark City": 4]
print("I have rated \(movieRatings.count) movies.")
let darkoRating = movieRatings["Donnie Darko"]
movieRatings["Dark City"] = 5
movieRatings
let oldRating: Int? = movieRatings.updateValue(5, forKey: "Donnie Darko")
if let lastRating = oldRating {
 print(lastRating)
}
movieRatings["The Cabinet of Dr. Caligari"] = 5
movieRatings["Dark City"] = nil
for (key, value) in movieRatings {
 print("The movie \(key) was rated: \(value).")
}
for movie in movieRatings.keys {
 print("User has rated \(movie).")
}
let watchedMovies = Array(movieRatings.keys)
...

You use the Array() syntax to create a new [String] instance. Inside the (), you pass in the
dictionary’s keys. The result is that watchedMovies is a constant instance of the Array type
representing all of the movies a user has in the movieRatings dictionary.

From the Library of wu yuan

ptg16315837

Chapter 10 Dictionaries

94

Silver Challenge
It is not uncommon to place instances of the Array type inside of a dictionary. Create a dictionary that
represents a state. Your dictionary’s keys will refer to counties (to keep it short, only include three
counties). Each key should map onto an array that holds five of the zip codes within that county. (You
can make up the county names and zip codes.)

Finally, log only the dictionary’s zip codes. Your result should look something like this:

Georgia has the following zip codes: [30306, 30307, 30308, 30309, 30310,
 30311, 30312, 30313, 30314, 30315,
 30301, 30302, 30303, 30304, 30305]

From the Library of wu yuan

ptg16315837

95

11
Sets

Swift provides a third collection type called Set. Set is not frequently used, purely by convention, but
we do not think that this should be the case. This chapter will introduce Set and show off some of its
unique advantages.

What Is a Set?
A Set is an unordered collection of distinct instances. This definition sets it apart from an Array, which
is ordered and can accommodate repeated values. For example, an array could have the following
content: [2,2,2,2], but a set cannot.

A Set has some strong similarities to a Dictionary, but is also a little different. Like Dictionary, a
set’s values are unordered within the collection. Similar to the requirement that a dictionary’s keys
must be unique, Set does not allow repeated values. In order to ensure that elements are unique, Set
requires that its elements conform to the protocol Hashable just as a dictionary’s keys do. However,
while dictionary values are accessed via their corresponding key, a set only stores individual elements,
not key-value pairs.

Table 11.1 summarizes this information.

Table 11.1 Comparing Swift’s collections

Collection Type Ordered? Unique? Stores

Array Yes No Elements

Dictionary No Keys Key-value pairs

Set No Elements Elements

Getting a Set
It is time to make an instance of Set. Create a new playground called Groceries.

Type in the following to get an instance of Set.

Listing 11.1 Creating a set
var groceryBag = Set<String>()

From the Library of wu yuan

ptg16315837

Chapter 11 Sets

96

You made an instance of Set and declared that it will hold instances of the String type. It is a mutable
Set called groceryBag and is currently empty. Let’s fix that.

You can add groceries to your groceryBag by using the insert(_:) method.

Listing 11.2 Adding to a set
var groceryBag = Set<String>()
groceryBag.insert("Apples")
groceryBag.insert("Oranges")
groceryBag.insert("Pineapple")

Now groceryBag has a few items inside of it. As with arrays and dictionaries, you can loop through a
set to see its contents.

Listing 11.3 Looping through a set
var groceryBag = Set<String>()
groceryBag.insert("Apples")
groceryBag.insert("Oranges")
groceryBag.insert("Pineapple")

for food in groceryBag {
 print(food)
}

If you open up the debug area, then you will see that each item in your groceryBag was logged to the
console.

As of Swift 2.0, Set does not have its own literal syntax. Nonetheless, you can still create a Set with
a more convenient syntax than what you saw above. Suppose that you already know the instances you
would like to add to the Set instance when you create it.

Listing 11.4 Creating a set, redux
var groceryBag = Set<String>(["Apples", "Oranges", "Pineapple"])
groceryBag.insert("Apples")
groceryBag.insert("Oranges")
groceryBag.insert("Pineapple")

for food in groceryBag {
 print(food)
}

You used an initializer on Set to create a Set instance from an Array instance (you will learn more
about initializers in Chapter 17). Thus, you no longer need the three calls to the insert(_:) method.

Sets provide another convenient syntax to create an instance. This syntax combines declaring the
instance to be of the Set type with the Array’s literal syntax. For example, you could replace the new
code in Listing 11.4 with the example below.

From the Library of wu yuan

ptg16315837

Working with Sets

97

var groceryBag = Set(["Apples", "Oranges", "Pineapple"])
var groceryBag: Set = ["Apples", "Oranges", "Pineapple"]

for food in groceryBag {
 print(food)
}

This code explicitly declares groceryBag to be of the Set type, which means that we can use the Array
literal syntax to create an instance of Set.

Working with Sets
Now that you have an instance of Set, you might be wondering how to work with the elements inside
of it. For example, you might want to know if your groceryBag contains a particular item. The Set
type provides a method called contains(_:) that looks inside of a set instance for a particular item.

Listing 11.5 Has bananas?
var groceryBag: Set = ["Apples", "Oranges", "Pineapple"]

for food in groceryBag {
 print(food)
}

let hasBananas = groceryBag.contains("Bananas")

The value of hasBananas is false; your groceryBag does not have any bananas inside of it.

Unions
Imagine that you are wandering around the grocery store and you bump into a friend. You get to
talking, and your friend suggests that you do your shopping together. Taking a peek into her shopping
cart, you see that she has a bunch of bananas. Since you were looking for bananas to complete the
recipe for your famous fruit salad, you decide to combine your grocery bags.

Listing 11.6 Combining sets
var groceryBag: Set = ["Apples", "Oranges", "Pineapple"]

for food in groceryBag {
 print(food)
}

let hasBananas = groceryBag.contains("Bananas")
let friendsGroceryBag = Set(["Bananas", "Cereal", "Milk", "Oranges"])
let commonGroceryBag = groceryBag.union(friendsGroceryBag)

You add a new constant Set instance representing your friend’s grocery bag and use the union(_:)
method to combine the two sets together. union(_:) is a method on the Set type that takes an
argument that expects a SequenceType (which is a protocol that you will learn more about in

From the Library of wu yuan

ptg16315837

Chapter 11 Sets

98

Chapter 22) and returns a new Set instance that includes the unique elements of both collections. In
short, you can pass arrays and sets to union(_:) and get back a set with their combined elements,
less any duplicates. Here, commonGroceryBag is a Set that contains the unique elements of both
groceryBag and friendsGroceryBag.

Figure 11.1 demonstrates the union of the two sets graphically.

Figure 11.1 Union of two sets

Intersects
You and your friend finish grocery shopping and head to your house to make your famous fruit salad.
When you get home, you find that your roommate also just got back from the grocery store. It turns
out that your roommate also wants to make fruit salad, so you compare your grocery bags to figure out
which items are duplicated and can be returned to the grocery store.

From the Library of wu yuan

ptg16315837

Disjoint

99

Listing 11.7 Intersecting sets
var groceryBag: Set = ["Apples", "Oranges", "Pineapple"]

for food in groceryBag {
 print(food)
}

let hasBananas = groceryBag.contains("Bananas")
let friendsGroceryBag = Set(["Bananas", "Cereal", "Milk", "Oranges"])
let commonGroceryBag = groceryBag.union(friendsGroceryBag)

let roommatesGroceryBag = Set(["Apples", "Bananas", "Cereal", "Toothpaste"])
let itemsToReturn = commonGroceryBag.intersect(roommatesGroceryBag)

Set provides a intersect(_:) that identifies the items that are present in both collections, and returns
those duplicated items in a new Set instance. Figure 11.2 shows this relationship graphically as a Venn
diagram. Your roommate’s grocery bag duplicates several of your items – but not all of them.

Figure 11.2 Intersecting sets

Disjoint
You have seen how to combine two sets into a new, all-inclusive set via the union(_:) method. You
also used the intersect(_:) method to find the common elements of two sets and place them into a
new set. What if you want to know if two sets contain any common elements?

Consider, for example, that you and your roommate realize that you both forgot several ingredients for
your famous fruit salad. You leave your friend to start chopping, and you and your roommate go back
to the store to pick up the final items (and return the duplicates). Your plan at the store is to split up and

From the Library of wu yuan

ptg16315837

Chapter 11 Sets

100

find different items to make the trip as fast as possible. Wouldn’t it be nice if you could reconvene at
the checkout and compare your carts quickly to make sure nothing is duplicated? Swift’s Set type has a
convenient method to help you with that.

Listing 11.8 Detecting intersections in sets
var groceryBag: Set = ["Apples", "Oranges", "Pineapple"]

for food in groceryBag {
 print(food)
}

let hasBananas = groceryBag.contains("Bananas")
let friendsGroceryBag = Set(["Bananas", "Cereal", "Milk", "Oranges"])
let commonGroceryBag = groceryBag.union(friendsGroceryBag)

let roommatesGroceryBag = Set(["Apples", "Bananas", "Cereal", "Toothpaste"])
let itemsToReturn = commonGroceryBag.intersect(roommatesGroceryBag)

let yourSecondBag = Set(["Berries", "Yogurt"])
let roommatesSecondBag = Set(["Grapes", "Honey"])
let disjoint = yourSecondBag.isDisjointWith(roommatesSecondBag)

You decided to pick up the berries and yogurt, and your roommate got the grapes and honey. The
two of you meet up at the register and check your carts to make sure nothing is repeated. Set’s
isDisjointWith(_:) method returns true or false depending on whether any members of the
set (e.g., yourSecondBag) are in the sequence provided to isDisjointWith’s argument (e.g.,
roommatesSecondBag).

In this case, disjoint will be true. The two sets, or grocery bags, do not share any items. You and
your roommate are ready to check out and go home to make your fruit salad.

Bronze Challenge
Consider the following code that models the cities two people have visited as sets.

let myCities = Set(["Atlanta", "Chicago",
 "Jacksonville", "New York", "San Francisco"])
let yourCities = Set(["Chicago", "San Francisco", "Jacksonville"])

Find a method on Set that returns a Bool indicating whether or not myCities contains all of the cities
contained by yourCities. (Hint: this relationship would make myCities a superset of yourCities.)

Silver Challenge
In this chapter, you used methods like union(_:) and intersect(_:) to create new sets. Sometimes,
however, you may not want to create new instances, but would rather modify the existing instances in
place. Look through the documentation and find the appropriate methods on the Set type. Rework the
examples in the chapter for union(_:) and intersect(_:) to use these methods.

From the Library of wu yuan

ptg16315837

101

12
Functions

A function is a named set of code that is used to accomplish some specific task. The function’s name
describes the task the function performs. You have already used some functions, such as print(),
which is a function provided to you by Swift. Other functions are created in code you write.

Functions execute code. Some functions define arguments that you can use to pass in data to help the
function do its work. Some functions return something after they have completed their work. You
might think of a function as a little machine. You turn it on and it chugs along, doing its work. You can
feed it data and, if it is built to do so, it will return a new chunk of data that results from its work.

Functions are an extremely important part of programming. Indeed, a program is mostly a collection of
related functions that combine to accomplish some sort of functionality. Accordingly, there is a lot to
cover in this chapter. Take your time and make sure that you are comfortable before moving on.

Let’s start with some examples.

A Basic Function
Create a new playground called Functions.playground. Enter the code below.

Listing 12.1 Defining a function
import Cocoa

func printGreeting() {
 print("Hello, playground.")
}
printGreeting()

Here, you define a function with the func keyword followed by the name of the function:
printGreeting(). The parentheses are empty because this function does not take any arguments.
(More on arguments soon.)

The opening brace ({) denotes the beginning of the function’s implementation. This is where you write
the code that describes how the function will perform its work. When the function is called, the code
inside the braces is executed. The printGreeting() function is fairly simple. You have one line of
code that uses print() to log the string “Hello, playground.” to the console.

Finally, you call the function to execute the code inside of it. To do this, you enter printGreeting()
on the line following the definition of the function. Calling the function executes its code, and Hello,
playground. is logged to the console.

Now that you have written and executed a simple function, it is time to graduate to more sophisticated
varieties.

From the Library of wu yuan

ptg16315837

Chapter 12 Functions

102

Function Parameters
Functions begin to take on more life when they have parameters. You use parameters to give a function
some inputs. We call these parts of a function “parameters” to indicate that they can change value
depending upon the data the caller passes into the function. The function takes the data passed to its
parameters to execute a task or produce a result.

Create a function that prints a more personal greeting by using a parameter.

Listing 12.2 Using a parameter
import Cocoa

func printGreeting() {
 print("Hello, playground.")
}
printGreeting()
func printPersonalGreeting(name: String) {
 print("Hello \(name), welcome to your playground.")
}

printPersonalGreeting("Matt")

printPersonalGreeting(_:) takes a single argument, as indicated in the parentheses directly after
the function name. An argument is the value a caller gives to a function’s parameter. In this case,
the function has a parameter called name that is an instance of the String type. You specify the type
for name after the : that follows the parameter’s name, just as you specify the types of variables and
constants.

As a quick aside, although the terms parameter and argument technically have different
meanings, they are used interchangeably by some. Also, you may be wondering why we
wrote printPersonalGreeting(_:) with _: inside of the parentheses. This signifies that
printPersonalGreeting(_:) has one parameter whose name is not used when calling the function:
printPersonalGreeting("Matt"). While name is available for use within the function, it is not used
when the function is called. You will learn more about external and internal parameter names below.

If the argument passed to the parameter name is an instance of String, it will be interpolated into the
string that is logged to the console. Check it out. Your console should say something like: “Hello Matt,
welcome to your playground.”

If you happened to pass an argument that was not of the String type, the compiler would give you an
error telling you that the type you passed in is incorrect. This behavior is useful; it lets you know what
your inputs will look like when you are writing the implementations of your functions.

Functions can – and often do – take multiple arguments. Make a new function that does a little math.

Listing 12.3 A function for division
...
func printPersonalGreeting(name: String) {
 print("Hello \(name), welcome to your playground.")
}
printPersonalGreeting("Matt")

func divisionDescription(num: Double, den: Double) {
 print("\(num) divided by \(den) equals \(num / den)")
}
divisionDescription(9.0, den: 3.0)

From the Library of wu yuan

ptg16315837

Parameter names

103

The function divisionDescription(_:den:) describes some basic division constructed from the
instances of the Double type that you supply to the function’s two parameters: num and den. Note that
you did some math within the \() of the string printed to the console. You should see “9 divided by 3
equals 3” logged to the console.

Parameter names
A function’s parameters have names. For example, the function divisionDescription(_:den:) has
two parameters with the parameter names num and den. You do not reference or see the first parameter
name when you use divisionDescription(_:den:), but you do use the second. By default, if you
call a function with more than one parameter, the first parameter name is not used, but all others are.
We use den when writing out the function (e.g., divisionDescription(_:den:)) because you use the
second parameter name when you call the function.

Sometimes, however, it is useful to have all of a function’s parameter names visible outside of your
function’s body.

Named parameters can make your functions more readable – provided the names are well chosen.
At the moment, the only parameter name visible when you call divisionDescription(_:den:) is
den, which is not very informative. This is fine within the function’s body, because the function’s
implementation makes the role of these parameters clear. As you read the code inside the function’s
implementation, it is fairly simple to determine what num and den do.

However, if the function is going to be used in some other file in your application’s code base, and the
function’s implementation is not immediately visible, it could be difficult to infer what values to give to
the function’s parameters. This would make the function less useful.

Change divisionDescription(_:den:)’s parameters to have external parameter names that are
different from the function’s internal parameter names to add some context to what values the function
expects.

Listing 12.4 Using explicit parameter names
...
func printPersonalGreeting(name: String) {
 print("Hello \(name), welcome to your playground.")
}
printPersonalGreeting("Matt")

func divisionDescription(num: Double, den: Double) {
 print("\(num) divided by \(den) equals \(num / den)")
}
divisionDescription(9.0, den: 3.0)
func divisionDescription(forNumerator num: Double, andDenominator den: Double) {
 print("\(num) divided by \(den) equals \(num / den)")
}
divisionDescription(forNumerator: 9.0, andDenominator: 3.0)

From the Library of wu yuan

ptg16315837

Chapter 12 Functions

104

Now divisionDescription(forNumerator:andDenominator:) has two parameters with external
names. When you call the function, you must use the external parameter names forNumerator and
andDenominator. The num and den parameter names are still available for use within the function’s
implementation, but you cannot use them to call the function because they are only visible inside of the
function’s implementation. By creating explicit – and descriptive – names for these parameters, you
have made the function more readable when you call it.

Naming functions and parameters can be tricky. In general, it is advisable to choose function and
parameter names that are informative and simple to type. Another dimension to consider is that Swift
style suggests that function and parameter names combine to form a readable phrase. For example,
divisionDescription(forNumerator:andDenominator:)’s external parameter names forNumerator
and andDenominator help make the function more readable. And while these external parameter names
are useful for calling the function, shorter parameter names (num and den) are used inside the function
to keep things simple.

Variadic parameters
A variadic parameter takes zero or more input values for its argument. Functions can have only one
variadic parameter, and it should typically be the final parameter in the list. The values provided to the
argument are made available within the function’s body as an array.

To make a variadic parameter, use three periods after the parameter’s type: e.g., names: String.... In
this example, names is available within the function’s body and has the type [String].

Update your printPersonalGreeting(_:) function to have a variadic parameter.

Listing 12.5 Greeting a group

...
func printPersonalGreeting(name: String) {
 print("Hello \(name), welcome to your playground.")
}
printPersonalGreeting("Matt")

func printPersonalGreetings(names: String...) {
 for name in names {
 print("Hello \(name), welcome to the playground.")
 }
}
printPersonalGreetings("Alex","Chris","Drew","Pat")
...

Now, the printPersonalGreeting(_:) function is replaced with a plural version:
printPersonalGreetings(_:). Check the console. You should see that the function logged a personal
greeting for each name that was supplied to the variadic parameter.

From the Library of wu yuan

ptg16315837

Default parameter values

105

Figure 12.1 Multiple greetings

Default parameter values
Swift’s parameters can take default values. Default values should be placed at the end of the function’s
parameter list. If a parameter has a default value you can omit that argument when calling the function.
(In which case, as you might expect, the function will use the parameter’s default value.)

Let’s see a default parameter value in action in your division function.

Listing 12.6 Adding a default parameter value
...
func divisionDescription(forNumerator num: Double, andDenominator den: Double) {
 print("\(num) divided by \(den) equals \(num / den)")
}
divisionDescription(forNumerator: 9.0, andDenominator: 3.0)
func divisionDescription(forNumerator num: Double,
 andDenominator den: Double,
 withPunctuation punctuation: String = ".") {
 print("\(num) divided by \(den) equals
 \(num / den)\(punctuation)")
}
divisionDescription(forNumerator: 9.0, andDenominator: 3.0)
divisionDescription(forNumerator: 9.0, andDenominator: 3.0, withPunctuation: "!")

Now, the function takes three parameters:
divisionDescription(forNumerator:andDenominator:withPunctuation:). Notice the new code:
punctuation: String = ".". You add a new parameter for punctuation, add its expected type, and
give it a default value via the = "." syntax. This means that the string created by the function will
conclude with a period by default.

Your two function calls illustrate how the default value works. To use the default, as in your first
function call, you can simply omit the final parameter. Or, as in your second function call, you can
substitute the default value for a new punctuation mark by passing in a new argument. The first call of

From the Library of wu yuan

ptg16315837

Chapter 12 Functions

106

the divisionDescription(forNumerator:andDenominator:withPunctuation:) function logs the
description with a period, and the second logs the description with an exclamation point.

Figure 12.2 Default and explicit punctuation

In-out parameters
Sometimes there is reason to have a function modify the value of an argument. In-out parameters allow
a function’s impact on a variable to live beyond the function’s body. There are a couple of caveats:
First, in-out parameters cannot have default values. Second, variadic parameters cannot be marked with
inout.

Say you have a function that will take an error message as an argument and will append some
information based on certain conditions. Consider the example below.

Listing 12.7 An in-out parameter
...
var error = "The request failed:"
func appendErrorCode(code: Int, inout toErrorString errorString: String) {
 if code == 400 {
 errorString += " bad request."
 }
}
appendErrorCode(400, toErrorString: &error)
error

The function appendErrorCode(_:toErrorString:) has two parameters. The first is the error code
that the function will compare against, which expects an instance of Int. Notice that this parameter is

From the Library of wu yuan

ptg16315837

Returning from a Function

107

not given an external name. Its name is added at the end of the function name. The second is an inout
parameter – denoted by the inout keyword before its name – named toErrorString, which expects
an instance of String. toErrorString is an external parameter name used when calling the function,
while errorString is an internal parameter name used within the function.

When you use the function, the variable you pass into the inout parameter is preceded by an
ampersand (&). This indicates that the variable will be modified by the function. Here, the errorString
is modified to read: “The request failed: bad request,” which you should see displayed in the results
sidebar.

In-out parameters are not the same as a function returning a value. If you want your function to
produce something, there is a more elegant way to handle this scenario.

Returning from a Function
Functions can give you information after they finish executing the code inside of their
implementation. This information is called the return of the function. It is often the
case that you write a function to do some work and return you some data. Make your
divisionDescription(forNumerator:andDenominator:withPunctuation:) function return an
instance of the String type.

Listing 12.8 Returning a string
...
func divisionDescription(forNumerator num: Double,
 andDenominator den: Double,
 withPunctuation punctuation: String = ".") {
 print("\(num) divided by \(den) equals
 \(num / den)\(punctuation)")
}
divisionDescription(forNumerator: 9.0, andDenominator: 3.0)
divisionDescription(forNumerator: 9.0, andDenominator: 3.0, withPunctuation: "!")
func divisionDescription(forNumerator num: Double,
 andDenominator den: Double,
 withPunctuation punctuation: String = ".") -> String {
 return "\(num) divided by \(den) equals
 \(num / den)\(punctuation)"
}
print(divisionDescription(forNumerator: 9.0,
 andDenominator: 3.0,
 withPunctuation: "!"))
...

The behavior of this new function is very similar to your earlier implementation with an important
twist: this new implementation returns a value. This return value is denoted by the -> String syntax,
which indicates that the function will return an instance of the specified type. Since you want to log a
string to the console, your function returns an instance of the String type. The details of the string to
be returned are inside the body of the function.

Since divisionDescription(forNumerator:andDenominator:withPunctuation:)
returns a String and print() expects to take a String argument, you can call
divisionDescription(forNumerator:andDenominator:withPunctuation:) within a call to print()
to log the string instance to the console.

From the Library of wu yuan

ptg16315837

Chapter 12 Functions

108

Nested Functions and Scope
Swift’s function definitions can be nested. Nested functions are declared and implemented within the
definition of another function. The nested function is not available outside of the enclosing function.
This feature is useful when you need a function to do some work, but only within another function.
Let’s look at an example.

Listing 12.9 Nested functions
...
func areaOfTriangle(withBase base: Double, andHeight height: Double) -> Double {
 let numerator = base * height
 func divide() -> Double {
 return numerator / 2
 }
 return divide()
}
areaOfTriangle(withBase: 3.0, andHeight: 5.0)

The function areaOfTriangle(withBase:andHeight:) takes two arguments of type Double: a base
and a height. areaOfTriangle(withBase:andHeight:) also returns a Double. Inside of this function’s
implementation, you declare and implement another function called divide(). This function takes
no arguments and returns a Double. The areaOfTriangle(withBase:andHeight:) function calls the
divide() function and returns the result.

The divide() function above makes use of a constant called numerator that is defined in
areaOfTriangle(withBase:andHeight:). Why does this work?

The constant is defined within the divide() function’s enclosing scope. Anything within a function’s
braces ({}) is said to be enclosed by that function’s scope. In this case, both the numerator constant
and the divide() function are enclosed by the scope of areaOfTriangle(withBase:andHeight:).

A function’s scope describes the visibility an instance or function will have. It is a sort of horizon.
Anything defined within a function’s scope will be visible to that function; anything that is not is past
that function’s field of vision. numerator is visible to the divide() function because they share the
same enclosing scope.

On the other hand, because the divide() function is defined within
areaOfTriangle(withBase:andHeight:) function’s scope, it is not visible outside of it.
The compiler will give you an error if you try to call the divide() function outside of
areaOfTriangle(withBase:andHeight:). Give it a try to see the error.

divide() is a very simple function. Indeed, areaOfTriangle(withBase:andHeight:) could achieve
the same result without it: return (base * height) / 2. The important lesson to focus on here is
how scope works. You will see a more sophisticated example of nested functions in Chapter 13. Stay
tuned!

Multiple Returns
Functions can return more than one value. To do this, Swift uses the tuple data type, which you learned
about in Chapter 5. Recall that a tuple is an ordered list of related values. To better understand how to
use tuples, you are going to make a function that takes an array of integers and sorts them into arrays
for even and odd integers.

From the Library of wu yuan

ptg16315837

Multiple Returns

109

Listing 12.10 Sorting evens and odds
...
func sortEvenOdd(numbers: [Int]) -> (evens: [Int], odds: [Int]) {
 var evens = [Int]()
 var odds = [Int]()
 for number in numbers {
 if number % 2 == 0 {
 evens.append(number)
 } else {
 odds.append(number)
 }
 }
 return (evens, odds)
}

Here, you first declare a function called sortEvenOdd(_:). You specify this function to take an array
of integers as its only argument. The function returns what is called a named tuple. You can tell that
the tuple is named because its constituent parts are named: evens will be an array of integers, and odds
will also be an array of integers.

Next, inside the implementation of the function, you initialize the evens and odds arrays to prepare
them to store their respective integers. You then loop through the array of integers provided to the
function’s parameter, numbers. At each iteration through the loop, you use the % operator to see if
number is even. If the result is even, then you append it to the evens array. If the result is not even, this
integer is added to the odds array.

Now that your function is set up, call it and pass it an array of integers.

Listing 12.11 Calling sortEvenOdd(_:)
...
func sortEvenOdd(numbers: [Int]) -> (evens: [Int], odds: [Int]) {
 var evens = [Int]()
 var odds = [Int]()
 for number in numbers {
 if number % 2 == 0 {
 evens.append(number)
 } else {
 odds.append(number)
 }
 }
 return (evens, odds)
}

let aBunchOfNumbers = [10,1,4,3,57,43,84,27,156,111]
let theSortedNumbers = sortEvenOdd(aBunchOfNumbers)
print("The even numbers are: \(theSortedNumbers.evens);
 the odd numbers are: \(theSortedNumbers.odds)")

First, you create an instance of the Array type to house a number of integers. Second, you give
that array to the sortEvenOdd(_:) function and assign the return value to a constant called
theSortedNumbers. Because the return value is specified above as (evens: [Int], odds: [Int]),
this is the type the compiler infers for your newly created constant. Finally, you log the result to the
console.

From the Library of wu yuan

ptg16315837

Chapter 12 Functions

110

Notice that you use string interpolation in combination with a tuple. You can access a tuple’s members
by name if they are defined. For example, theSortedNumbers.evens inserts the contents of the evens
array into the string logged to the console. Your console output should be The even numbers are:
[10, 4, 84, 156]; the odd numbers are: [1, 3, 57, 43, 27, 111].

Optional Return Types
Sometimes you want a function to return an optional. When there is a chance that a function will
sometimes need to return nil but will have a value to return at other times, Swift allows you to use an
optional return.

Imagine, for example, that you need a method that looks at a person’s full name and pulls out and
returns that person’s middle name. Not all people have a middle name, so your function will need a
mechanism to return the person’s middle name if there is one and return nil otherwise. Use an optional
to do just that.

Listing 12.12 Using an optional return
...
func grabMiddleName(name: (String, String?, String)) -> String? {
 return name.1
}

let middleName = grabMiddleName(("Matt",nil,"Mathias"))
if let theName = middleName {
 print(theName)
}

Here, you create a function called grabMiddleName(_:). This function looks a little different than what
you have seen before. This function takes one argument: a tuple of type (String, String?, String).
The tuple’s three String instances are for the first, middle, and last names, and the instance for the
middle name is declared as an optional type.

The grabMiddleName(_:) function’s one parameter is called name. You access this parameter inside
the implementation of the function using the index of the name that you want to return. Because the
tuple is zero-indexed, you use 1 to access the middle name provided to the argument. And because the
middle name might be nil, the return type of the function is optional.

You then call grabMiddleName(_:) and provide it a first, middle, and last name (feel free to change the
names). Since you declared the middle name component of the tuple to be of type String?, you can
pass nil to that portion of the tuple. You cannot do this for the first or last name portion of the tuple.

Nothing is logged to the console. Because the middle name provided is nil, the Boolean used in the
optional binding does not evaluate to true and print() is not executed.

Try giving the middle name a valid String instance and note the result.

From the Library of wu yuan

ptg16315837

Exiting Early from a Function

111

Exiting Early from a Function
You already learned about Swift’s conditional statements in Chapter 3, but there is one more to
introduce: guard statements. Just like if/else statements, guard statements execute code depending
on a Boolean value resulting from some expression. But guard statements are different from what you
have seen before. A guard statement is used to exit early from a function if some condition is not met,
hence the name guard. Think of guard statements as a way to protect your code from running under
improper conditions.

Following the example above, consider an example in which you want to write a function that greets a
person by their middle name if they have one. If they do not have a middle name, you would rather use
something more generic.

Listing 12.13 Early exits with guard statements
...
func greetByMiddleName(name: (first: String, middle: String?, last: String)) {
 guard let middleName = name.middle else {
 print("Hey there!")
 return
 }
 print("Hey \(middleName)")
}
greetByMiddleName(("Matt","Danger","Mathias"))

greetByMiddleName(_:) is similar to grabMiddleName(_:) in that it takes the same argument, but it
differs in that it has no return value. Another difference is that the elements in the tuple name are named
to match specific components of a person’s name. As you can see, these element names are available
inside of the function.

The code guard let middleName = name.middle binds the value in middle to a constant called
middleName. If there is no value in the optional, then the code in the guard statement’s body is
executed. This would result in a generic greeting being logged to the console that omits the middle
name: "Hey there!". After this, you must explicitly return from the function, which represents that
the condition established by the guard statement was not met and the function needs to return early.

You can think of guard as protecting you from embarrassingly addressing somebody as “mumble-
mumble” when you do not know his middle name. But if the tuple did get passed to the function with
a middle name, then its value is bound to middleName and is available after the guard statement. This
means that middleName is visible in the parent scope that encompasses the guard statement.

You pass in a middle name to the tuple name to greetByMiddleName(_:) when you call the function.
That means “Hey Danger!” will be logged to the console. If nil were passed to the middle name
element, then “Hey there!” would have been logged to the console. (Go ahead and try it!)

Function Types
Each function you have been working with in this chapter has a specific type. In fact, all functions
do. Function types are made up of the function’s parameter and return types. Consider the
sortEvenOdd(_:) function. This function takes an array of integers as an argument and returns a tuple
with two arrays of integers. Thus, the function type for sortEvenOdd(_:) is expressed as: ([Int]) ->
([Int], [Int]).

From the Library of wu yuan

ptg16315837

Chapter 12 Functions

112

The function’s parameters are listed inside the left parentheses, and the return type comes after the ->.
You can read this function type as: “A function with one parameter that takes an array of integers and
returns a tuple with two arrays containing integers.” For comparison, a function with no arguments and
no return has the following type: () -> ().

Function types are useful because you can assign them to variables. This feature will become
particularly handy in the next chapter when you see that you can use functions in the arguments and
returns of other functions. For now, let’s just take a look at how you can assign a function type to a
constant:

let evenOddFunction: ([Int]) -> ([Int], [Int]) = sortEvenOdd

This code creates a constant named evenOddFunction whose value is the function type of the
sortEvenOdd(_:) function. Pretty cool, right? Now you can pass this constant around just like any
other. You can even use this constant to call the function: evenOddFunction([1,2,3]) will sort the
numbers in the array supplied to the function’s sole argument into a tuple of two arrays – one for even
and odd integers.

You accomplished a lot in this chapter. There was a lot of material here, and it may make sense to go
through it all a second time. Be sure to type out all of the code in this chapter. In fact, try to extend the
examples to different cases. Try to break the examples and then fix them.

If you are still a little fuzzy on functions, do not worry. They are also a major focus in the next chapter,
so you will get lots more practice.

Bronze Challenge
guard statements support the use of where clauses. Using a where clause with a guard statement gives
you further control over the statement’s condition. Refactor the greetByMiddleName(_:) function to
have a where clause in its guard statement. This where clause should check to see if the middle name
is fewer than 4 characters. If it is, then greet that person by their middle name. If it is not, then use the
generic greeting.

Silver Challenge
Write a function called beanSifter(_:) that takes a grocery list (as an array of strings) and “sifts
out” the beans from the other groceries. The function should take one argument that has an external
parameter name called groceryList, and it should return a named tuple of the type (beans:
[String], otherGroceries: [String]).

Here is an example of how you should be able to call your function and what the result should be:

let result = beanSifter(groceryList: ["green beans",
 "milk",
 "black beans",
 "pinto beans",
 "apples"])

result.beans == ["green beans", "black beans", "pinto beans"]
result.otherGroceries == ["milk", "apples"]

Hint: you may need to make use of a function on the String type called hasSuffix(_:).

From the Library of wu yuan

ptg16315837

113

13
Closures

Closures are discrete bundles of functionality that can be used in your application to accomplish
specific tasks. Functions, which you learned about in the last chapter, are a special case of closures.
You can think of a function as a named closure.

In Chapter 12, you worked primarily with global and nested functions. Closures differ from functions
in that they have a more compact and lightweight syntax. They allow you to write a “function-like”
construct without having to give it a name and a full function declaration. This makes closures easy to
pass around in function arguments and returns.

Let’s get started. Create a new playground called Closures.playground.

Closure Syntax
Imagine that you are a community organizer managing a number of organizations. You want to keep
track of how many volunteers there are for each organization, and have created an instance of the
Array type for this task.

Listing 13.1 Starting with an array
import Cocoa

var volunteerCounts = [1,3,40,32,2,53,77,13]

You entered the number of volunteers for each organization as they were provided to you. This means
that the array is completely disorganized. It would be better if your array of volunteers was sorted from
lowest to highest number. Good news: Swift provides a method called sort(_:) that allows you to
specify how an instance of Array will be sorted. (We call a function a method when it is defined on a
type, like the Array type. More on this topic in Chapter 15.)

sort(_:) takes one argument: a closure that describes how the sorting should be done. The closure
takes two arguments, whose types must match the type of the elements in the array, and returns a Bool.
The two arguments are compared to produce this return value, which represents whether the instance
in the first argument should be sorted before the instance in the second argument. Use < in the return
if you would like argument one to be sorted before argument two. Doing so will sort the array in an
ascending fashion – that is, from smallest to largest. Use > in the return if you would like argument two
to come before argument one. This will sort the array in an descending fashion – that is, from largest to
smallest.

From the Library of wu yuan

ptg16315837

Chapter 13 Closures

114

Because your array of volunteer-counts is filled with integers, the function type for sort(_:) will
look like this in your code: ((Int, Int) -> Bool) -> [Int]. In words, “sort(_:) is a method that
takes a closure that takes two integers to compare and returns a Boolean value specifying which integer
should come first. sort(_:) returns a new array of integers that have been ordered according to how
the closure organizes them.”

Add the following code to sort your array.

Listing 13.2 Sorting the array
import Cocoa

var volunteerCounts = [1,3,40,32,2,53,77,13]

func sortAscending(i: Int, j: Int) -> Bool {
 return i < j
}
let volunteersSorted = volunteerCounts.sort(sortAscending)

First, you create a function called sortAscending(_:j:) that has the required type. It compares
two integers and returns a Boolean that indicates whether Int i should be placed before Int j. In
particular, sortAscending(_:j:) will return true if i should be placed before j. As this global
function is a named closure (remember, all functions are closures), you can provide this function as the
value of the argument in sort(_:).

Next, you call sort(_:), passing in sortAscending(_:j:) for the second argument. Because
sort(_:) returns a new array, you assign that result to a new constant array called volunteersSorted.
This instance will serve as your new record for the organizations’ volunteer counts, correctly sorted.

Look in the results sidebar of your playground. You should see that the values inside
volunteersSorted are sorted from lowest to highest.

Figure 13.1 Sorting volunteer counts

From the Library of wu yuan

ptg16315837

Closure Expression Syntax

115

Closure Expression Syntax
This works, but you can clean up your code. Closure syntax follows this general form:

{(parameters) -> return type in
 // Code
}

You write a closure expression inside of the braces ({}). The closure’s parameters are listed inside of
the parentheses immediately after the opening brace. Its return type comes after the parameters and
uses the regular syntax. The keyword in is used to separate the closure’s parameters and return type
from the statements inside of its body.

Refactor your code to use a closure expression: create a closure inline instead of defining a separate
function outside of the sort(_:) function.

Listing 13.3 Refactoring your sorting code
import Cocoa

var volunteerCounts = [1,3,40,32,2,53,77,13]

func sortAscending(i: Int, j: Int) -> Bool {
 return i < j
}
let volunteersSorted = volunteerCounts.sort(volunteerCounts, sortAscending)

let volunteersSorted = volunteerCounts.sort({
 (i: Int, j: Int) -> Bool in
 return i < j
 })

This code is a bit cleaner and more elegant than the first version. Instead of providing a function
defined elsewhere in the playground, you implement a closure inline in the sort(_:) function’s second
argument. You define the parameters and their type (Int) inside of the closure’s parentheses and also
specify its return type. Next, you implement the closure’s body by providing the logical test (is i less
than j?) that will inform the closure’s return.

The result is just as before: the sorted array is assigned to volunteersSorted.

This refactoring is a step in the right direction, but it is still a little verbose. Closures can take
advantage of Swift’s type inference system, so you can clean up your closure even more by trimming
out the type information.

Listing 13.4 Taking advantage of type inference
import Cocoa

var volunteerCounts = [1,3,40,32,2,53,77,13]

let volunteersSorted = volunteerCounts.sort({
 (i: Int, j: Int) -> Bool in
 return i < j
 })

let volunteersSorted = volunteerCounts.sort({ i, j in i < j })

From the Library of wu yuan

ptg16315837

Chapter 13 Closures

116

There are three new developments here. First, you remove the type information for both the parameters
and the return. You can remove the return type because the compiler knows that checking if i < j will
return true or false, that is a Bool value. Second, you move the entire closure expression to be one
line.

Third, you remove the keyword return. Not all closure statements can omit the return keyword.
This one can because it only has one expression (i < j). If more expressions were needed, an explicit
return would be needed.

Notice that the result in the sidebar is the same.

Your closure is getting fairly compact, but it can become even more so. Swift provides shorthand
argument names that you can refer to in inline closure expressions. These shorthand argument names
behave similarly to the explicitly declared arguments you have been using: they have the same
types and values. The compiler’s type inference capabilities help it to know the number and types of
arguments your closure takes, which means it is not necessary to name them.

For example, the compiler knows that sort(_:) takes a closure. That closure itself takes two
parameters that are of the same type as the items in the array you pass into the sort(_:) function’s
argument. Because the closure has two arguments, whose values are compared to determine their order,
you can refer to the values of the arguments using $0 for the first and $1 for the second.

Adjust your code to take advantage of the shorthand syntax.

Listing 13.5 Using shorthand syntax for arguments
import Cocoa

var volunteerCounts = [1,3,40,32,2,53,77,13]

let volunteersSorted = volunteersCounts.sort({ i, j in i < j })

let volunteersSorted = volunteersCounts.sort({ $0 < $1 })

Now that your inline closure expression makes use of the shorthand argument syntax, you do not need
to explicitly declare the parameters as you did for i and j. The compiler knows that the values in the
closure’s arguments are of the correct type and knows what to infer based on the < operator.

Incidentally, for a closure with more than two arguments you can use $2, $3, and so on.

Before you think this closure could not possibly get any slimmer, just wait, there is more! If a closure
is a passed to a function’s final argument, it can be written inline, outside of and after the function’s
parentheses. Since sort(_:) only takes one argument, this means you do not need any parentheses at
all. Make this change.

Listing 13.6 Inline closure as the function’s final argument
import Cocoa

var volunteerCounts = [1,3,40,32,2,53,77,13]

let volunteersSorted = volunteerCounts.sort({ $0 < $1 })

let volunteersSorted = volunteerCounts.sort { $0 < $1 }

From the Library of wu yuan

ptg16315837

Functions as Return Types

117

This “trailing closure syntax” is especially helpful if the closure’s body is long. Here, the trailing
closure makes for only a little less typing.

Truly, “Brevity is the soul of wit.” The code above works just as well in this terse form as the earlier,
much more verbose version. After all, there is really only one thing that you care about (is one integer
less than another?), and that can be easily expressed. However, do not go too crazy with these tricks. It
is always more important to make sure that your code is readable and maintainable.

Functions as Return Types
Now that you have more experience with functions and closures, recall from Chapter 12 that every
function has a function type. A function type defines a function’s or closure’s parameter and return
types. For example, a function that takes a String argument and returns an Int has the function type
of (String) -> Int. Function types are frequently used to determine what sort of closure you need to
satisfy a given parameter’s type or what sort of function needs to be returned.

In Swift, functions are first-class objects. One implication of this is that functions can return other
functions as their return type. Remember your little town of Knowhere? It is time to make a function to
improve your town. You are going to build some roads.

Listing 13.7 Return to Knowhere
import Cocoa

var volunteerCounts = [1,3,40,32,2,53,77,13]

let volunteersSorted = volunteerCounts.sort { $0 < $1 }

func makeTownGrand() -> (Int, Int) -> Int {
 func buildRoads(lightsToAdd: Int, toLights: Int) -> Int {
 return toLights + lightsToAdd
 }
 return buildRoads
}

The function makeTownGrand() takes no arguments – it is like your grandfather. It does, however,
return a function. This function takes two arguments, both integers, and returns an integer. Inside the
makeTownGrand() function’s body, you implement the function you return. In terms of implementation
details, the function you return is a nested function called buildRoads(_:toLights:). Its arguments
and return type match what was declared in makeTownGrand().

From the Library of wu yuan

ptg16315837

Chapter 13 Closures

118

Exercise your new function and build some roads.

Listing 13.8 The roads to Knowhere

import Cocoa

var volunteerCounts = [1,3,40,32,2,53,77,13]

let volunteersSorted = volunteerCounts.sort { $0 < $1 }

func makeTownGrand() -> (Int, Int) -> Int {
 func buildRoads(lightsToAdd: Int, toLights: Int) -> Int {
 return toLights + lightsToAdd
 }
 return buildRoads
}
var stoplights = 4
let townPlan = makeTownGrand()
stoplights = townPlan(4, stoplights)
print("Knowhere has \(stoplights) stoplights.")

First, you set up a variable called stoplights. This instance is declared as a variable because you
are going to build some roads that will add to the town’s number of stoplights. Next, you declare a
constant called townPlan that refers to the function that is created by the makeTownGrand() function.
Then you call that function and pass into it the number of lights to add (the first argument) and the
current number of stoplights (the second argument). The result of this function, an instance of type Int
is reassigned to the stoplights variable. Last, you print this new value to the console.

Check your console. It should read, “Knowhere has 8 stoplights.”

Functions as Arguments
Functions can serve as arguments to other functions. Recall, for example, that you initially gave
sort(_:) the sortAscending(_:j:) function as an argument.

Practicality suggests that your town can only build roads when it has a suitable budget. Adjust your
previous makeTownGrand() function to take a budget parameter and a condition parameter. The budget
parameter will serve as your town’s budget, and the condition parameter will evaluate whether this
budget is suitable to build the new roads.

From the Library of wu yuan

ptg16315837

Functions as Arguments

119

Listing 13.9 Adding budget considerations
import Cocoa

var volunteerCounts = [1,3,40,32,2,53,77,13]

let volunteersSorted = volunteerCounts.sort { $0 < $1 }

func makeTownGrand() -> (Int, Int) -> Int {
 func buildRoads(lightsToAdd: Int, toLights: Int) -> Int {
 return toLights + lightsToAdd
 }
 return buildRoads
}

var stoplights = 4
let townPlan = makeTownGrand()
stoplights = townPlan(4, stoplights)

func makeTownGrand(budget: Int, condition: Int -> Bool) -> ((Int, Int) -> Int)? {
 if condition(budget) {
 func buildRoads(lightsToAdd: Int, toLights: Int) -> Int {
 return toLights + lightsToAdd
 }
 return buildRoads
 } else {
 return nil
 }
}
func evaluateBudget(budget: Int) -> Bool {
 return budget > 10000
}

var stoplights = 4

if let townPlan = makeTownGrand(1000, condition: evaluateBudget) {
 stoplights = townPlan(4, stoplights)
}
print("Knowhere has \(stoplights) stoplights.")

Let’s go over the changes here.

One change is the new makeTownGrand(_:condition:) function, which takes two arguments. The first
is an instance of the Int type representing the town’s budget. The second is called condition and takes
a function. This function determines whether the town’s budget is sufficient. Thus, it will take an Int
and return a Bool. If the integer budget is high enough, then this function will return true. If the budget
is not high enough, then the function will return false.

Did you notice that the makeTownGrand(_:condition:) function has a different return type? The
return type is now ((Int, Int) -> Int)?. The previous implementation of makeTownGrand(_:)
returned a function that took two integers and returned an integer. In this revised version,
makeTownGrand(_:condition:) returns the same thing, but in an optional incarnation. Why? Consider
the budget requirement. If the town has the appropriate budget, then the buildRoads(_:toLights:)
function will be created and returned. If, on the other hand, the budget is not sufficient, the
buildRoads(_:toLights:) will not be created and nil will be returned. An optional is needed to
handle the possibility of a nil return.

From the Library of wu yuan

ptg16315837

Chapter 13 Closures

120

The implementation of makeTownGrand(_:condition:) runs the function passed into the condition
parameter. If it evaluates to true, then the buildRoads(_:toLights:) function is created and returned.
If condition evaluates to false, then nil is returned.

Also, you create the evaluateBudget(_:) function. This function takes an integer and returns
a Boolean. Its implementation evaluates the integer to see whether it is greater than a threshold
(arbitrarily set at 10,000).

Finally, you use optional binding to conditionally set townPlan. If the budget provided to the
makeTownGrand(_:condition:) function is sufficiently large, then the buildRoads(_:toLights:)
function will be created, returned, and assigned to townPlan. In this case, your town’s number
of stoplights will be increased by 4. If, however, the budget is not large enough, then
makeTownGrand(_:condition:) will return nil. In this case, your town’s number of stoplights will not
be increased.

Check your console. Unfortunately, your town’s budget is too small. A budget of 1,000 is
certainly less than the requisite 10,000. Thus, makeTownGrand(_:condition:) returned nil and
buildRoads(_:toLights:) was never executed. Your town will have to keep saving before it can build
any new roads…

OK, enough time for saving. Your town now has enough money to build some roads. Update the code
with a higher budget to see the effect.

Listing 13.10 Building more roads
import Cocoa

var volunteerCounts = [1,3,40,32,2,53,77,13]

let volunteersSorted = volunteerCounts.sort { $0 < $1 }

func makeTownGrand(budget: Int, condition: Int -> Bool) -> ((Int, Int) -> Int)? {
 if condition(budget) {
 func buildRoads(lightsToAdd: Int, toLights: Int) -> Int {
 return toLights + lightsToAdd
 }
 return buildRoads
 } else {
 return nil
 }
}
func evaluateBudget(budget: Int) -> Bool {
 return budget > 10000
}

var stoplights = 4

if let townPlan = makeTownGrand(1000, evaluateBudget) {
 stoplights = townPlan(4, stoplights)
}
if let newTownPlan = makeTownGrand(10500, condition: evaluateBudget) {
 stoplights = newTownPlan(4, stoplights)
}
print("Knowhere has \(stoplights) stoplights.")

The budget of 10,500 exceeds the minimum necessary to build roads. You should see in the sidebar and
on the console that your town now has a whopping 8 stoplights!

From the Library of wu yuan

ptg16315837

Closures Capture Values

121

Closures Capture Values
Closures and functions can keep track of internal information encapsulated by a variable defined in
their enclosing scope. To see an example of this, imagine that Knowhere is booming. As growth can be
erratic, you create a function that will allow you to update the town’s population data based on recent
growth. Your town planner will update the town’s census data every time the population grows by 500
people.

Listing 13.11 Tracking growth
...
print("Knowhere has \(stoplights) stoplights.")

func makeGrowthTracker(forGrowth growth: Int) -> () -> Int {
 var totalGrowth = 0
 func growthTracker() -> Int {
 totalGrowth += growth
 return totalGrowth
 }
 return growthTracker
}
var currentPopulation = 5422
let growBy500 = makeGrowthTracker(forGrowth: 500)

The function makeGrowthTracker(forGrowth:) builds a growthTracker() function.
makeGrowthTracker(forGrowth:) takes one argument, an integer representing the growth to track,
and returns a function that takes no arguments and returns an integer. This integer is a running total
of the growth your town is experiencing, totalGrowth. The growthTracker() function captures the
value of the totalGrowth variable from its enclosing scope. After growthTracker() is created, the
totalGrowth variable will be incremented by the amount specified in the argument passed to the
makeGrowthTracker(forGrowth:) function.

Exercise and test this function by calling it a few times.

Listing 13.12 The population is booming
...
print("Knowhere has \(stoplights) stoplights.")

func makeGrowthTracker(forGrowth growth: Int) -> () -> Int {
 var totalGrowth = 0
 func growthTracker() -> Int {
 totalGrowth += growth
 return totalGrowth
 }
 return growthTracker
}
var currentPopulation = 5422
let growBy500 = makeGrowthTracker(forGrowth: 500)
growBy500()
growBy500()
growBy500()
currentPopulation += growBy500() // currentPopulation is now 7422

You call growBy500() four times to model a growth of 2,000 people for your town. Notice that the first
three calls to growBy500() do not assign its result to any constant or variable. This is fine because the

From the Library of wu yuan

ptg16315837

Chapter 13 Closures

122

function is keeping an internal running total of your town’s growth. All you have to do to update your
town’s population is assign the result of the function to your currentPopulation variable when your
town planner is ready.

Closures Are Reference Types
Closures are reference types. This means that when you assign a function to a constant or variable you
are actually setting that constant or variable to point to the function. You are not creating a distinct
copy of that function. One important consequence of this fact is that any information captured by the
function’s scope will be changed if you call the function via a new constant or variable.

To see this, create a new constant and set it equal to your growBy500() function.

Listing 13.13 Duplicate growth
...
func makeGrowthTracker(forGrowth growth: Int) -> () -> Int {
 var totalGrowth = 0
 func growthTracker() -> Int {
 totalGrowth += growth
 return totalGrowth
 }
 return growthTracker
}
var currentPopulation = 5422
let growBy500 = makeGrowthTracker(forGrowth: 500)
growBy500()
growBy500()
growBy500()
currentPopulation += growBy500() // currentPopulation is now 7422
let anotherGrowBy500 = growBy500
anotherGrowBy500() // totalGrowth now equal to 2500

anotherGrowBy500 now points to the same function to which growBy500 points, so when you call
anotherGrowBy500(), the variable totalGrowth is incremented by 500. Thus, totalGrowth’s value is
increased to 2,500 in this code. But remember that currentPopulation is unchanged because we do
not increment its value by the return value of anotherGrowBy500()!

For comparison, suppose a large neighboring city has fallen in love with your town planner’s function.
The city wants its own growth-tracker function to update its population data every time the population
grows by 10,000. Create the city’s population and use the makeGrowthTracker(forGrowth:) function
to create another growth-tracker function for the larger city.

Listing 13.14 Another population to track
...
let anotherGrowBy500 = growBy500
anotherGrowBy500() // totalGrowth now equal to 2500
var someOtherPopulation = 4061981
let growBy10000 = makeGrowthTracker(forGrowth: 10000)
someOtherPopulation += growBy10000()
currentPopulation

You now have another population that you are keeping track of, and you have a new growth-tracker
function called growBy10000() to help. You use growBy10000() to grow the city’s population:

From the Library of wu yuan

ptg16315837

Functional Programming

123

someOtherPopulation += growBy10000(). This is analogous to your use of growBy500(). The city’s
population is increased to 4,071,981 after this line. Notice that small-town Knowhere’s population,
represented by currentPopulation, does not change. It is still 7,422. This is because you used the
makeGrowthTracker(forGrowth:) function to create a new growth-tracker function. This new growth-
tracker function is separate and distinct from growBy500().

Functional Programming
Swift adopts some patterns from the functional programming paradigm. It is difficult to provide a
concrete definition of functional programming because people use the phrase with different meanings
and intentions, but typically it is understood to include:

• First-class functions – functions can be passed as arguments to other functions, can be stored in
variables, etc.; they are just like any other type.

• Pure functions – functions have no side effects; functions, given the same input, always return the
same output, and do not modify other states elsewhere in the program. Most math functions like
sin, cos, fibonacci, and factorial are pure.

• Immutability – mutability is de-emphasized as it is more difficult to reason about data whose
values can change.

• Strong typing – a strong type system increases the runtime safety of the code because the
guarantees of the language’s type system are checked at compile time.

Swift supports all of these approaches.

Functional programming can make your code more concise and expressive. By emphasizing
immutability and strong compile time type checking, your code can also be safer at runtime. These
hallmarks of functional programming can also make code easier to reason about and maintain.

Swift’s let keyword allows you to declare immutable instances in your code. Its strong type system
helps you to catch errors at compile time instead of at runtime. Swift also provides several higher-
order functions that are well known to developers fond of functional programming: map(_:),
filter(_:), and reduce(_:combine:). These functions emphasize that Swift’s functions are indeed
first-class citizens.

Let’s look at what these functions add to Swift’s toolkit.

Higher-order functions
Higher-order functions take at least one function as an input. You have already worked with higher-
order functions in this chapter (for example, recall the use of sort(_:) above). Let’s take a look at
three more: map(_:), filter(_:), and reduce(_:combine:).

From the Library of wu yuan

ptg16315837

Chapter 13 Closures

124

map(_:)
map(_:) is a function that you can use to transform an array’s contents. You map an array’s contents
from one value to another and put these new values into a new array. Because map(_:) is a higher-
order function, you provide it with another function that tells it how to transform the array’s contents.

The Swift standard library provides an implementation of map(_:) on the Array type. Suppose your
town, Knowhere, has three precincts, each with its own population. Hold these values in an array
named precinctPopulations.

Listing 13.15 Setting populations by precinct
...
let anotherGrowBy500 = growBy500
anotherGrowBy500() // totalGrowth now equal to 2500

var someOtherPopulation = 4061981
let growBy10000 = makeGrowthTracker(forGrowth: 10000)
someOtherPopulation += growBy10000()
currentPopulation

let precinctPopulations = [1244, 2021, 2157]

As before, Knowhere is a town on the move. Given Knowhere’s growth, the town’s city planner needs
to make projections for each precinct’s population. The city planner could use map(_:) in conjunction
with the precinctPopulations array to do some estimating.

Listing 13.16 Using map(_:) to estimate population
...
let anotherGrowBy500 = growBy500
anotherGrowBy500() // totalGrowth now equal to 2500

var someOtherPopulation = 4061981
let growBy10000 = makeGrowthTracker(forGrowth: 10000)
someOtherPopulation += growBy10000()
currentPopulation

let precinctPopulations = [1244, 2021, 2157]
let projectedPopulations = precinctPopulations.map {
 (population: Int) -> Int in
 return population * 2
}
projectedPopulations

Here, you use map(_:) to apply an estimate to each value of precinctPopulations. (Notice that you
use the trailing closure syntax.) Next, you declare a parameter named population of type Int and
specify that the closure will return an Int. map(_:) will apply this function to the value at each index
in precinctPopulations. The estimate increases each precinct’s population by 200% and results in a
new array called projectedPopulations, which has the values 2488, 4042, and 4314.

From the Library of wu yuan

ptg16315837

Higher-order functions

125

filter(_:)
filter(_:), like map(_:), can be called on an instance of the Array type. It also takes a closure
expression as an argument. Its purpose is to filter an array based upon some criteria. The resulting array
will contain the values of the original array that passed the test.

After applying her estimate, your city planner wants to know which precincts have projected
populations greater than 4,000 people. filter(_:) is an ideal choice for this operation.

Listing 13.17 Filtering an array
...

let precinctPopulations = [1244, 2021, 2157]
let projectedPopulations = precinctPopulations.map {
 (population: Int) -> Int in
 return population * 2
}
projectedPopulations

let bigProjections = projectedPopulations.filter {
 (projection: Int) -> Bool in
 return projection > 4000
}
bigProjections

As above, you use the trailing closure syntax. The closure takes a population projection of type Int
as its argument and returns a Bool indicating whether the projection passed the test. Inside of this
closure, you check to see whether the projection’s value is greater than 4,000 and return the result. The
values that pass this test are given to the bigProjections array. Only two projections pass the test, so
bigProjections contains 4,042 and 4,314.

From the Library of wu yuan

ptg16315837

Chapter 13 Closures

126

reduce(_:combine:)
Imagine that Knowhere’s mayor asked the city planner to provide an estimate of the town’s
projected population. With the data spread out in an array, how could the city planner figure this out?
reduce(_:combine:) provides a great way to accomplish this task. You can call reduce(_:combine:)
on an instance of the array type. Its job is to reduce the values in the collection to a single value that is
returned from the function.

Listing 13.18 Reducing an array to a single value
...

let bigProjections = projectedPopulations.filter {
 (projection: Int) -> Bool in
 return projection > 4000
}
bigProjections

let totalProjection = projectedPopulations.reduce(0) {
 (accumulatedProjection: Int, precinctProjection: Int) -> Int in
 return accumulatedProjection + precinctProjection
}
totalProjection

reduce(_:combine:)’s first argument refers to an initial amount (or some other value) that can be
added at the outset. The second argument is a closure that defines how the values inside the collection
should be combined. (Notice that you used the trailing closure syntax once again.) Here, all you need
is to add up the projections in the projectedPopulations array, so the initial value you give is 0.
Next, the closure has two arguments, accumulatedProjection and precinctProjection, both of type
Int, that are combined as the reduce(_:combine:) traverses the array. When the function is done,
totalProjection is set to be equal to 10844.

Gold Challenge
Use what you have learned in this chapter to clean up the implementation of reduce(_:combine:)
presented above. The implementation can be shortened quite significantly: your solution should be
expressed in one line. When you are done, take a look at the sample code for the other higher-order
functions and practice with them.

From the Library of wu yuan

ptg16315837

Part IV
Enumerations, Structures, and

Classes

You will be learning about a lot of new tools and concepts in the chapters included in this part of
the book. You will be adding features to projects that you will change in later projects. This will
simulate the act of writing code in a real way: sometimes you start developing an application with one
solution in mind and then have to modify your code when you learn a better pattern or a feature has
changed. That does not mean the first code or tools were bad – just that they would be better for other
circumstances. Projects often evolve and develop, and decisions that are ideal at one stage may become
inadequate as requirements change. Learning to be flexible in the face of these changes is part of the
trade.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

129

14
Enumerations

As you have worked through the book up to this point, you have been using all the built-in types that
Swift provides, like integers, strings, arrays, and dictionaries. The next couple of chapters will show the
capabilities the language provides to create your own types. The focus of this chapter is enumerations
(or enums), which allow you to create instances that are one of a predefined list of cases. If you have
used enumerations in other languages, much of this chapter will be familiar. But Swift’s enums also
have some advanced features that make them unique.

Basic Enumerations
Create a new playground called Enumerations.playground. Define an enumeration of possible text
alignments:

Listing 14.1 Defining an enumeration
enum TextAlignment {
 case Left
 case Right
 case Center
}

You define an enumeration with the enum keyword followed by the name of the enumeration. The
opening brace ({) opens the body of the enum, and it must contain at least one case statement that
declares the possible values for the enum. Here, you include three. The name of the enumeration
(TextAlignment in this case) is now usable as a type, just like Int or String or the various other types
you have used so far.

Types (and, therefore, enums) are named with a capital first letter by convention. If multiple words are
needed, use camel-casing: UpperCamelCasedType. Variables and functions begin with a lowercase first
letter, and also use camel-casing as needed.

Because the enumeration declares a new type, you can now create instances of that type.

Listing 14.2 Creating an instance of TextAlignment
enum TextAlignment {
 case Left
 case Right
 case Center
}

var alignment: TextAlignment = TextAlignment.Left

From the Library of wu yuan

ptg16315837

Chapter 14 Enumerations

130

Although TextAlignment is a type that you have defined, the compiler can still infer the type for
alignment. Therefore, you can omit the explicit type of the alignment variable:

Listing 14.3 Taking advantage of type inference
...
var alignment: TextAlignment = TextAlignment.Left

The compiler’s ability to infer the type of enumerations is not limited to variable declarations. If you
have a variable known to be of a particular enum type, you can omit the type from the case statement
when assigning a new value to the variable.

Listing 14.4 Inferring the enum type
...
var alignment = TextAlignment.Left
alignment = .Right

Notice that you had to specify the enum’s type and value when initially creating the alignment
variable, because that line gives alignment both its type and its value. In the next line, you can omit
the type and simply reassign alignment to be equal to a different value within its type. You can also
omit the enum type when passing its values to functions or comparing them.

Listing 14.5 Type inference when comparing values
...
alignment = .Right

if alignment == .Right {
 print("we should right-align the text!")
}

While enum values can be compared in if statements, switch statements are typically used to handle
enum values. Use switch to print the alignment in a human-readable way.

Listing 14.6 Switching to switch
...
alignment = .Right

if alignment == .Right {
 print("we should right-align the text!")
}
switch alignment {
case .Left:
 print("left aligned")

case .Right:
 print("right aligned")

case .Center:
 print("center aligned")
}

From the Library of wu yuan

ptg16315837

Basic Enumerations

131

Recall from Chapter 5 that all switch statements must be exhaustive. In that chapter, you wrote switch
statements that included a default case. When switching on enumeration values, that is not necessary:
The compiler knows all possible values the enumeration can check. If you have included a case for
each one, the switch is exhaustive.

You could include a default case when switching on an enum type.

Listing 14.7 Making center the default case
...
switch alignment {
case .Left:
 print("left aligned")

case .Right:
 print("right aligned")

case .Center:
default:
 print("center aligned")
}

This code works, but we recommend avoiding default clauses when switching on enum types,
because using a default is not as “future proof.” Suppose you later want to add another alignment
option for justified text.

Listing 14.8 Adding a case
enum TextAlignment {
 case Left
 case Right
 case Center
 case Justify
}

var alignment = TextAlignment.LeftJustify
alignment = .Right
...

Notice that your program still runs, but it now prints the wrong value. The alignment variable is set
to Justify, but the switch statement prints “center aligned.” This is what we mean when we say that
using a default is not future proof: it adds complication to modifying your code in the future.

Change your switch back to listing each case explicitly.

Listing 14.9 Returning to explicit cases
...
switch alignment {
case .Left:
 print("left aligned")

case .Right:
 print("right aligned")

default:
case .Center:
 print("center aligned")
}

From the Library of wu yuan

ptg16315837

Chapter 14 Enumerations

132

Now, instead of your program running and printing the wrong answer, you have a compile-time error
that your switch statement is not exhaustive. It may seem odd to say that a compiler error is desirable,
but that is exactly the situation here.

If you use a default clause when switching on an enum, your switch statement will always be
exhaustive and satisfy the compiler. If you add a new case to the enum without updating the switch,
the switch statement will fall to the default when it encounters the new case. Your code will compile,
but it will not do what you intended, as you saw in Listing 14.8.

By listing each enum case in the switch, you ensure that the compiler will help you find all of the
places in your code that need to be updated if you add cases to your enum. That is what is happening
here: the compiler is telling you that your switch statement does not include all of the cases defined in
your enum.

Let’s fix that.

Listing 14.10 Including all cases
...
switch alignment {
case .Left:
 print("left aligned")

case .Right:
 print("right aligned")

case .Center:
 print("center aligned")

case .Justify:
 print("justified")
}

Raw Value Enumerations
If you have used enumerations in a language like C or C++, you may be surprised to learn that Swift
enums do not have an underlying integer type. You can, however, choose to get the same behavior by
using what Swift refers to as a raw value. To use Int raw values for your text alignment enumeration,
change the declaration of the enum.

Listing 14.11 Using raw values
enum TextAlignment: Int {
 case Left
 case Right
 case Center
 case Justify
}
...

Specifying a raw value type for TextAlignment gives a distinct raw value of that type (Int) to each
case. The default behavior for integral raw values is that the first case gets raw value 0, the next case
gets raw value 1, and so on. Confirm this by printing some interpolated strings.

From the Library of wu yuan

ptg16315837

Raw Value Enumerations

133

Listing 14.12 Confirming the raw values
...
var alignment = TextAlignment.Justify

print("Left has raw value \(TextAlignment.Left.rawValue)")
print("Right has raw value \(TextAlignment.Right.rawValue)")
print("Center has raw value \(TextAlignment.Center.rawValue)")
print("Justify has raw value \(TextAlignment.Justify.rawValue)")
print("The alignment variable has raw value \(alignment.rawValue)")
...

You are not limited to the default behavior for raw values. If you prefer, you can specify the raw value
for each case.

Listing 14.13 Specifying raw values
enum TextAlignment: Int {
 case Left = 20
 case Right = 30
 case Center = 40
 case Justify = 50
}
...

When is a raw value enumeration useful? The most common reason for using a raw value is to store or
transmit the enum. Instead of writing functions to transform a variable holding an enum, you can use
rawValue to convert the variable to its raw value.

This brings up another question: if you have a raw value, how do you convert it back to the enum
type? Every enum type with a raw value can be created with a rawValue: argument, which returns an
optional enum.

Listing 14.14 Converting raw values to enum types
...
print("Justify has raw value \(TextAlignment.Justify.rawValue)")
print("The alignment variable has raw value \(alignment.rawValue)")

// Create a raw value.
let myRawValue = 20

// Try to convert the raw value into a TextAlignment
if let myAlignment = TextAlignment(rawValue: myRawValue) {
 // Conversion succeeded!
 print("successfully converted \(myRawValue) into a TextAlignment")
} else {
 // Conversion failed.
 print("\(myRawValue) has no corresponding TextAlignment case")
}
...

What is going on here? You start with myRawValue, a variable of type Int. Then you try to
convert that raw value into a TextAlignment case using TextAlignment(rawValue:). Because
TextAlignment(rawValue:) has a return type of TextAlignment?, you use optional binding to
determine whether you get a TextAlignment value or nil back.

From the Library of wu yuan

ptg16315837

Chapter 14 Enumerations

134

The raw value you used here corresponds to TextAlignment.Left, so the conversion succeeds. Try
changing it to a raw value that does not exist to see the message that conversion is not possible.

Listing 14.15 Trying a bad value
...
let myRawValue = 20 100
...

Figure 14.1 shows the else block being executed:

Figure 14.1 Result of failed TextAlignment conversion

So far, you have been using Int as the type for your raw values. Swift allows a variety of types to be
used, including all the built-in numeric types and String. Create a new enum that uses String as its
raw value type.

Listing 14.16 Creating an enum with strings
...
enum ProgrammingLanguage: String {
 case Swift = "Swift"
 case ObjectiveC = "Objective-C"
 case C = "C"
 case Cpp = "C++"
 case Java = "Java"
}

let myFavoriteLanguage = ProgrammingLanguage.Swift
print("My favorite programming language is \(myFavoriteLanguage.rawValue)")

You did not have to specify values when you first used a raw value of type Int – the compiler
automatically set the first case to 0, the second case to 1, and so on. Here, you specified the
corresponding raw String value for each case. This is not necessary: if you omit the raw value, Swift
will use the name of the case itself! Modify ProgrammingLanguage to take out the raw values that
match their case names.

Listing 14.17 Using default string raw values
...
enum ProgrammingLanguage: String {
 case Swift = "Swift"
 case ObjectiveC = "Objective-C"
 case C = "C"
 case Cpp = "C++"
 case Java = "Java"
}

let myFavoriteLanguage = ProgrammingLanguage.Swift
print("My favorite programming language is \(myFavoriteLanguage.rawValue)")

Your declaration of devotion to Swift does not change.

From the Library of wu yuan

ptg16315837

Methods

135

Methods
A method is a function that is associated with a type. In some languages, methods can only be
associated with classes (which we will discuss in Chapter 15). In Swift, methods can also be associated
with enums. Create a new enum that represents the state of a lightbulb.

Listing 14.18 Lightbulbs can be on or off
...
enum Lightbulb {
 case On
 case Off
}

One of the things you might want to know is the temperature of the lightbulb. (For simplicity, assume
that the bulb heats up immediately when it is turned on and cools off to the ambient temperature
immediately when it is turned off.) Add a method for computing the surface temperature.

Listing 14.19 Establishing temperature behaviors
...
enum Lightbulb {
 case On
 case Off

 func surfaceTemperatureForAmbientTemperature(ambient: Double) -> Double {
 switch self {
 case .On:
 return ambient + 150.0

 case .Off:
 return ambient
 }
 }
}

Here, you add a function inside the definition of the Lightbulb enumeration. Because of the location
of the definition of this function, it is now a method associated with the Lightbulb type. We would call
it “a method on Lightbulb.” The function appears to take a single argument (ambient), but because it
is a method, it also takes an implicit argument named self of type Lightbulb. All Swift methods have
a self argument, which is used to access the instance on which the method is called – in this case, the
instance of Lightbulb.

From the Library of wu yuan

ptg16315837

Chapter 14 Enumerations

136

Create a variable to represent a lightbulb and call your new method.

Listing 14.20 Turning on the light
...
enum Lightbulb {
 case On
 case Off

 func surfaceTemperatureForAmbientTemperature(ambient: Double) -> Double {
 switch self {
 case .On:
 return ambient + 150.0

 case .Off:
 return ambient
 }
 }
}

var bulb = Lightbulb.On
let ambientTemperature = 77.0

var bulbTemperature = bulb.surfaceTemperatureForAmbientTemperature(ambientTemperature)
print("the bulb's temperature is \(bulbTemperature)")

First you create bulb, an instance of the Lightbulb type. When you have an
instance of the type, you can call methods on that instance using the syntax
instance.methodName(parameters). You do exactly that here when you call
bulb.surfaceTemperatureForAmbientTemperature(ambientTemperature). The bulb variable is an
instance of Lightbulb, surfaceTemperatureForAmbientTemperature is the name of the method you
are calling, and ambientTemperature is a parameter you pass in to the method. You store the result of
the method call, a Double, in the bulbTemperature variable. Finally, you print a string with the bulb’s
temperature to the console.

From the Library of wu yuan

ptg16315837

Methods

137

Another method that seems like it might be useful is one that would toggle the lightbulb. To toggle the
lightbulb, you need to modify self to change it from On to Off or Off to On. Try to add a toggle()
method that takes no arguments and does not return anything.

Listing 14.21 Trying to toggle
...
enum Lightbulb {
 case On
 case Off

 func surfaceTemperatureForAmbientTemperature(ambient: Double) -> Double {
 switch self {
 case .On:
 return ambient + 150.0

 case .Off:
 return ambient
 }
 }

 func toggle() {
 switch self {
 case .On:
 self = .Off

 case .Off:
 self = .On
 }
 }
}
...

After typing this, you will get a compiler error that states that you cannot assign to self inside a
method. In Swift, an enumeration is a value type, and methods on value types are not allowed to make
changes to self (there will be more discussion of value types in Chapter 15). If you want to allow a
method to change self, you need to mark it as a mutating method. Add this to your code.

Listing 14.22 Making toggle a mutating method
...
 mutating func toggle() {
 switch self {
 case .On:
 self = .Off

 case .Off:
 self = .On
 }
 }
...

From the Library of wu yuan

ptg16315837

Chapter 14 Enumerations

138

Now you can toggle your lightbulb and see what the temperature is when the bulb is off.

Listing 14.23 Turning off the light
...
var bulbTemperature = bulb.surfaceTemperatureForAmbientTemperature(ambientTemperature)
print("the bulb's temperature is \(bulbTemperature)")

bulb.toggle()
bulbTemperature = bulb.surfaceTemperatureForAmbientTemperature(ambientTemperature)
print("the bulb's temperature is \(bulbTemperature)")

Associated Values
Everything you have done so far with enumerations falls into the same general category of defining
static cases that enumerate possible values or states. Swift also offers a much more powerful flavor of
enumeration: cases with associated values. Associated values allow you to attach data to instances of
an enumeration, and different cases can have different types of associated values.

Create an enumeration that allows for tracking the dimensions of a couple of basic shapes. Each kind
of shape has different types of properties. To represent a square, you need a single value (the length of
one side). To represent a rectangle, you need two values: a width and a height.

Listing 14.24 Setting up ShapeDimensions
...
enum ShapeDimensions {
 // Square's associated value is the length of one side
 case Square(Double)

 // Rectangle's associated value defines its width and height
 case Rectangle(width: Double, height: Double)
}

You have defined a new enumeration type, ShapeDimensions, with two cases. The Square case
has an associated value of type Double. The Rectangle case has an associated value with the type
(width:Double, height:Double), a named tuple (first seen in Chapter 12).

To create instances of ShapeDimensions, you must specify both the case and an appropriate associated
value for the case.

Listing 14.25 Creating shapes
...
enum ShapeDimensions {
 // Square's associated value is the length of one side
 case Square(Double)

 // Rectangle's associated value defines its width and height
 case Rectangle(width: Double, height: Double)
}

var squareShape = ShapeDimensions.Square(10.0)
var rectShape = ShapeDimensions.Rectangle(width: 5.0, height: 10.0)

Here, you create a square with sides 10 units long and a rectangle that is 5 units by 10 units.

From the Library of wu yuan

ptg16315837

Associated Values

139

You can use a switch statement to unpack an associated value and make use of it. Add a method to
ShapeDimensions that computes the area of a shape.

Listing 14.26 Using associated values to compute area
...
enum ShapeDimensions {
 // Square's associated value is the length of one side
 case Square(Double)

 // Rectangle's associated value defines its width and height
 case Rectangle(width: Double, height: Double)

 func area() -> Double {
 switch self {
 case let .Square(side):
 return side * side

 case let .Rectangle(width: w, height: h):
 return w * h
 }
 }
}
...

In your implementation of area(), you switch on self just as you did earlier in the chapter. Here,
the switch cases use Swift’s pattern matching to bind self’s associated value with a new variable (or
variables).

Call the area() method on the instances you created earlier to see it in action.

Listing 14.27 Computing areas
...
var squareShape = ShapeDimensions.Square(10.0)
var rectShape = ShapeDimensions.Rectangle(width: 5.0, height: 10.0)

print("square's area = \(squareShape.area())")
print("rectangle's area = \(rectShape.area())")

From the Library of wu yuan

ptg16315837

Chapter 14 Enumerations

140

Not all enum cases have to have associated values. For example, you could add a Point case.
Geometric points do not have any dimensions. To add a Point, leave off the associated value type.

Add a Point and update the area() method to include its area.

Listing 14.28 Setting up a Point
...
enum ShapeDimensions {
 // Point has no associated value - it is dimensionless
 case Point

 // Square's associated value is the length of one side
 case Square(Double)

 // Rectangle's associated value defines its width and height
 case Rectangle(width: Double, height: Double)

 func area() -> Double {
 switch self {
 case .Point:
 return 0

 case let .Square(side):
 return side * side

 case let .Rectangle(width: w, height: h):
 return w * h
 }
 }
}
...

Now, create an instance of a point and confirm that area() works as expected.

Listing 14.29 What is the area of a point?
...
var squareShape = ShapeDimensions.Square(10.0)
var rectShape = ShapeDimensions.Rectangle(width: 5.0, height: 10.0)
var pointShape = ShapeDimensions.Point

print("square's area = \(squareShape.area())")
print("rectangle's area = \(rectShape.area())")
print("point's area = \(pointShape.area())")

From the Library of wu yuan

ptg16315837

Recursive Enumerations

141

Recursive Enumerations
You now know how to attach associated values to enum cases. This brings up a curious question. Can
you attach an associated value of an enum’s own type to one of its cases? (Perhaps this question brings
up another: why would you want to?)

A data structure that comes up frequently in computer science is a tree. Most hierarchical data can
naturally be represented as a tree. Think of a family tree: it contains people (the “nodes” of the tree)
and ancestral relationships (the “edges” of the tree). The family tree branching stops when you reach
an ancestor you do not know, as in Figure 14.2.

Figure 14.2 A family tree

Modeling a family tree can be difficult because for any given person, you may know zero, one, or both
of their parents. If you know one or both parents, you would like to keep track of their ancestors as
well. Try to create an enum that will let you build up as much of your family tree as you know.

Listing 14.30 Incorrect attempt at FamilyTree
...
enum FamilyTree {
 case NoKnownParents
 case OneKnownParent(name: String, ancestors: FamilyTree)
 case TwoKnownParents(fatherName: String, fatherAncestors: FamilyTree,
 motherName: String, motherAncestors: FamilyTree)
}

Once you have typed this in, Xcode gives you an error that contains a suggested fix: “Recursive enum
'FamilyTree' is not marked 'indirect'.” FamilyTree is “recursive” because its cases have an associated
value that is also of type FamilyTree. Why does the language care if an enum is recursive, though?

From the Library of wu yuan

ptg16315837

Chapter 14 Enumerations

142

The answer to that question requires a little bit of understanding of how enumerations work under
the hood. The Swift compiler has to know how much memory every instance of every type in your
program will occupy. You do not (usually) have to worry about this, as the compiler figures it all out
for you when it builds your program. Enumerations, however, are a little tricky.

The compiler knows that any instance of an enum will only ever be in one case at a time, although it
may change cases as your program runs. Therefore, when the compiler is deciding how much memory
an instance of enum requires, it will look at each case and figure out which case requires the most
memory. The enum will require that much memory (plus a little bit more that the compiler will use to
keep track of which case is currently assigned).

Look back at your ShapeDimensions enum. The .Point case has no associated data, so it requires
no extra memory. The .Square case has an associated Double, so it requires one Double’s worth
of memory (8 bytes). The .Rectangle case has two associated Doubles, so it requires 16 bytes
of memory. The actual size of an instance of ShapeDimensions is 17 bytes: enough room to store
.Rectangle, if necessary, plus one byte to keep track of which case the instance actually is.

Now consider your FamilyTree enum. How much memory is required for the .OneKnownParent case?
Enough memory for a String plus enough memory for an instance of FamilyTree. See the problem?
The compiler cannot determine how big a FamilyTree is without knowing how big a FamilyTree is.
Looking at it another way, FamilyTree would require an infinite amount of memory!

To solve this issue, Swift can introduce a layer of indirection. Instead of deciding how much memory
.OneKnownParent will require (which would lead back into infinite recursion), you can use the
keyword indirect to instruct the compiler to instead store the enum’s data behind a pointer. We do not
discuss pointers much in this book because Swift does not make you deal with them. Even in this case,
you do not have to do anything except opt in to making FamilyTree use pointers under the hood. Do
that now, and you are well on your way to modeling a family tree.

Listing 14.31 Correct FamilyTree
...
indirect enum FamilyTree {
 case NoKnownParents
 case OneKnownParent(name: String, ancestors: FamilyTree)
 case TwoKnownParents(fatherName: String, fatherAncestors: FamilyTree,
 motherName: String, motherAncestors: FamilyTree)
}

How does using a pointer solve the “infinite memory” problem? The compiler now knows to store
a pointer to the associated data, putting the data somewhere else in memory rather than making the
instance of FamilyTree big enough to hold the data. The size of an instance of FamilyTree is now 8
bytes on a 64-bit architecture – the size of one pointer.

From the Library of wu yuan

ptg16315837

Recursive Enumerations

143

It is worth noting that you do not have to mark the entire enumeration as indirect: you can also mark
the individual recursive cases as indirect. Make that change now.

Listing 14.32 FamilyTree indirect cases
...
indirect enum FamilyTree {
 case NoKnownParents
 indirect case OneKnownParent(name: String, ancestors: FamilyTree)
 indirect case TwoKnownParents(fatherName: String, fatherAncestors: FamilyTree,
 motherName: String, motherAncestors: FamilyTree)
}

Now that FamilyTree is accepted by the compiler, create an instance to model Fred’s family tree.
Fred does not know many of his ancestors, which is nice for you because typing out an instance of
FamilyTree is a little onerous!

He knows both of his parents, so you need to use the .TwoKnownParents case. He only knows one of
his father’s parents, so you need to use the .OneKnownParent case for his father’s ancestors. He does
not know either of his mother’s parents or either of his great-grandparents on his father’s side, so you
need to use the .NoKnownParents case for both of those ancestor values.

Listing 14.33 Creating a FamilyTree
...
let fredAncestors = FamilyTree.TwoKnownParents(
 fatherName: "Fred Sr.",
 fatherAncestors: .OneKnownParent(name: "Beth", ancestors: .NoKnownParents),
 motherName: "Marsha",
 motherAncestors: .NoKnownParents)

Figure 14.3 Fred’s family tree

The new code above is described graphically by Figure 14.3. fredAncestors is a recursive
enumeration that represents Fred’s known family tree, with each node in the tree representing an
instance of the same enumeration. As you can see, this sort of enumeration models nested information
quite well.

From the Library of wu yuan

ptg16315837

Chapter 14 Enumerations

144

Bronze Challenge
Add a perimeter() method to the ShapeDimensions enum. This method should compute the perimeter
of a shape (the sum of the length of all its edges). Make sure you handle all the cases!

Silver Challenge
Add another case to the ShapeDimensions enum for a right triangle. You can ignore the orientation
of the triangle. Just keep track of the lengths of its three sides. Adding a new case will cause your
playground to give you an error in the area() method. Fix the error.

From the Library of wu yuan

ptg16315837

145

15
Structs and Classes

Structures (commonly referred to as structs) and classes are the pillars on which you build your
applications. They provide important mechanisms to model the things you wish to represent in your
code.

You are going to transition from the playground and create a command-line tool, which you will work
in for the next several chapters. Your command-line tool project will represent a town undergoing a
serious monster infestation. You will use both structs and classes to model these entities and will give
them properties to store data and functions so that these entities can do some work.

As you will see, structs and classes have similarities and differences. Which to use for any particular
situation is an important decision. This chapter will get you started with understanding their strengths,
and in Chapter 18 you will learn more about when to use each.

A New Project
Create a new project by clicking on your Xcode icon. The first screen that you see is the Welcome
screen (Figure 15.1). Click Create a new Xcode project.

Figure 15.1 Welcome window

From the Library of wu yuan

ptg16315837

Chapter 15 Structs and Classes

146

Next, you will see a screen for selecting a project template. A template formats your project with a
number of presets and configurations common to a given style of application. On the lefthand side of
the window, notice that there are two sections: iOS and OS X. Select Application from within the OS X
section. Then, in the main area of the window, choose the Command Line Tool template option and
click Next (Figure 15.2). This template will create a very basic project file.

Figure 15.2 Choosing a template

Now you will choose options for your project, including a name (Figure 15.3). In the Product Name
field, type in MonsterTown. Enter BigNerdRanch (or whatever you would like) for the project’s
Organization Name. The Organization Identifier fills in for you using reverse Domain Name Service
notation (“reverse DNS”), and is used with the product name to create the Bundle Identifier. The
bundle ID is used to identify your application on iTunes Connect when you are ready to distribute your
application.

Select Swift for the Language option and click Next.

From the Library of wu yuan

ptg16315837

A New Project

147

Figure 15.3 Naming your project

Last, Xcode asks you where to save the project. Select a good location and click Create.

Your project opens in Xcode with the main.swift file selected, as in Figure 15.4. (If you see any other
screen, click main.swift in the lefthand panel.)

Figure 15.4 main.swift

From the Library of wu yuan

ptg16315837

Chapter 15 Structs and Classes

148

Let’s take a moment to look at the organization of the Xcode application window. Figure 15.5 provides
a high-level overview of the most prominent sections.

Figure 15.5 Organization of Xcode

The pane on the far left is the navigator area. It provides several views that encapsulate how your
project is organized. The view that opens by default is the project navigator. In the project navigator,
you see a listing of your files, which at the moment only includes main.swift.

Moving one section to the right, you see the editor area. This is where you will add, view, and edit the
code in a selected file.

On the far right is the utilities area. The utilities area provides several inspectors that allow you to get
more information, such as the file inspector that gives information about a file’s location, name, and so
on.

At the bottom of the Xcode window is the debug area. You will use this area to debug your code when
there are problems.

At the top of the window is the toolbar, which has Play and Stop buttons you will use to run and stop
your programs. The toolbar also has three buttons on the far right to display and hide the navigator,
utilities, and debug areas.

In a command-line tool, main.swift represents the entry point of your program. main.swift typically
contains “top-level” code, or code that is not contained within the implementation of any function
or defined on a specific type (like a struct or a class). The execution of the code in this file is order-
dependent: it executes from the top to the bottom.

Because main.swift is where your program starts running, the code in this file typically does set-up
work. As you will see, you will define types in other files and create instances of them in main.swift.
For example, you will create a Town.swift file to hold a definition of a struct called Town. Then you
will create an instance of Town in main.swift.

From the Library of wu yuan

ptg16315837

A New Project

149

Types are frequently defined in their own files to help organize an application’s source code. This
strategy makes it easier to find and debug code.

Notice that the main.swift file already has the following code:

import Foundation

print("Hello, World!")

The import Foundation code brings the Foundation framework into the main.swift file. This
framework consists of a number of classes primarily designed to do work in and with Objective-C. In
the future, we will ignore this line of code unless you need it for context in the code listing or for using
one of the types it provides. The print("Hello, World!") code should look familiar. It logs the string
"Hello, World!" to the console.

Build and run your program. You can do this several ways:

• click Product in the toolbar at the top of your screen (see Figure 15.6), then select Run

• press Command-R on your keyboard

• click the triangular play button in the upper lefthand corner

Figure 15.6 Xcode toolbar

After you run your program, "Hello, World!" is logged to the console. That is great, but you have
seen this behavior before. Let’s make your program more interesting by creating custom structs and
classes. Before you move on, make sure to delete the print("Hello, World!") because you will not
need it.

Listing 15.1 Removing “Hello, World!” (main.swift)
import Foundation

print("Hello, World!")

From the Library of wu yuan

ptg16315837

Chapter 15 Structs and Classes

150

Structures
A struct is a type that groups a set of related chunks of data together in memory. You use structs when
you would like to group data together under a common type. For example, you will create a struct
called Town in MonsterTown to model a town with a monster problem.

Making Town a struct encapsulates its data within a single type, and placing its definition in its own
file provides a convenient location to find its implementation. In previous chapters, you modeled a
town in a playground. Because the example was relatively small, this was not all that limiting. But it is
better to encapsulate the definition of the town within its own type. A playground is great for rapidly
prototyping some code, but it does not really match the sort of projects that you will be working with in
real app development.

Add a new file to your project by clicking File → New → File.... You can also type Command-N on
your keyboard. A new window, like the one shown in Figure 15.7, prompts you to select a template for
your new file. Select Source in the OS X section on the left, then choose Swift File and click Next.

Figure 15.7 Adding a Swift file

From the Library of wu yuan

ptg16315837

Structures

151

Next you are asked to name the new file and set its location. Call this file Town and make sure the box
is checked to add it to the MonsterTown target (Figure 15.8). Click Create.

Figure 15.8 Town.swift

Select Town.swift in the navigator area. When the file opens, you will find that it is nearly blank,
except for the comments at the top and the import Foundation line.

Start by declaring your Town struct.

Listing 15.2 Declaring a struct (Town.swift)
import Foundation

struct Town {

}

From the Library of wu yuan

ptg16315837

Chapter 15 Structs and Classes

152

The keyword struct signals that you are declaring a struct, in this case named Town. You will
add code between the braces ({}) to define the behavior of this struct. For example, you are about
to add variables to your new struct so that it can hold on to some data that will help to model the
characteristics of your town.

Technically, these variables are called properties, which is the subject of the next chapter. Properties
can be variable or constant, as you have seen before using the var and let keywords. Add some
properties to your struct.

Listing 15.3 Adding properties (Town.swift)
struct Town {
 var population = 5422
 var numberOfStoplights = 4
}

Here, you add two properties to Town: population and numberOfStoplights. Both of these properties
are mutable – this makes sense, because a town’s population and number of stoplights are likely to
change over time. These properties also have default values for the sake of simplicity. When a new
instance of the Town struct is made, it will default to having a population of 5422 and 4 stoplights.

Switch to your main.swift file and create a new instance of Town to see your struct in action.

Listing 15.4 Creating an instance of Town (main.swift)
var myTown = Town()
print("Population: \(myTown.population),
 number of stoplights: \(myTown.numberOfStoplights)")

(Note that the code in the print() call above is split into two lines due to page-size limitations. If you
enter the code exactly as it is shown above, you will see an error. Avoid this by writing the print()
call on one line, like so: print("Population: \(myTown.population), number of stoplights:
\(myTown.numberOfStoplights)").)

You accomplish three things with this code.

First, you create an instance of the Town type. You do this by entering the name of the type (here, Town)
followed by empty parentheses (). Including the empty parentheses calls the default initializer for Town
(more on initialization in Chapter 17).

Second, you set this new instance equal to a variable you call myTown.

Third, you use string interpolation to print the values of the Town struct’s two properties to the
console. Notice that you use dot syntax to access the properties’ values. For example, the syntax
myTown.population retrieves the population of the myTown instance.

From the Library of wu yuan

ptg16315837

Instance Methods

153

Run your program. The output reads Population: 5422, number of stoplights: 4 (Figure 15.9).

Figure 15.9 Describing myTown

Instance Methods
The print() function above is a fine way to print a description of myTown. But a town should know
how to describe itself. Create a function on the struct Town that prints the values of its properties to the
console. Navigate to your Town.swift file and add the following function definition.

Listing 15.5 Letting Town describe itself (Town.swift)
struct Town {
 var population = 5422
 var numberOfStoplights = 4

 func printTownDescription() {
 print("Population: \(population);
 number of stoplights: \(numberOfStoplights)")
 }
}

printTownDescription() is a method because it is a function that is associated with a particular type.
(Recall from Chapter 14 that this is the definition of a method.) Thus far, you have mainly worked with
what are called global functions. Global functions are not defined on any specific type, and for this
reason they are also called free functions.

printTownDescription() takes no arguments and returns nothing. Its purpose is to log a description
of a town’s properties to the console. That makes printTownDescription() an instance method,
because it is called on a specific instance of Town.

From the Library of wu yuan

ptg16315837

Chapter 15 Structs and Classes

154

To make use of your new instance method, you need to call it on an instance of Town. Navigate back to
main.swift and replace the print() function with your new instance method.

Listing 15.6 Calling your new instance method (main.swift)
var myTown = Town()
print("Population: \(myTown.population),
 number of stoplights: \(myTown.numberOfStoplights)")
myTown.printTownDescription()

You use dot syntax to call a function on an instance: myTown.printTownDescription().

Run your program. The console output is the same as before.

Mutating methods
Your printTownDescription() method is great for displaying your town’s current information. But
what if you need a function that changes your town’s information? If an instance method on a struct
changes any of the struct’s properties, it must be marked as mutating. In Town.swift, add a mutating
method to the Town type to increase a town instance’s population.

Listing 15.7 A mutating method to increase population (Town.swift)
struct Town {
 var population = 5422
 var numberOfStoplights = 4

 func printTownDescription() {
 print("Population: \(population);
 number of stoplights: \(numberOfStoplights)")
 }

 mutating func changePopulation(amount: Int) {
 population += amount
 }
}

Note that you mark the instance method changePopulation() with the mutating keyword. As in
Chapter 14, this means that the method can change the values in the struct. Both structures and
enumerations are value types (which you will read more about later in the chapter) and require the
mutating keyword on methods that change the value of an instance’s properties.

The method has one parameter, amount, that is of the Int type. This parameter is used to increase the
town’s population: population += amount. Switch over to main.swift to exercise this function.

Listing 15.8 Increasing the population (main.swift)
var myTown = Town()
myTown.changePopulation(500)
myTown.printTownDescription()

As before, you use dot syntax to call the function on your town. If you build and run the program
you will see that myTown’s population has been increased by 500: Population: 5922; number of
stoplights: 4.

From the Library of wu yuan

ptg16315837

Classes

155

Classes
Like structs, classes are used to model related data under a common type. Classes differ from structs in
a few very important ways, and this section will be careful to highlight those differences. You will use
classes in MonsterTown to model various types of monsters that will be terrorizing your town.

A monster class
Now that you have a struct representing a town, it is time to make things a little more interesting. Your
town is, unfortunately, infested with monsters. This is not good for property values.

Create a new Swift file called Monster. As before, click File → New → File... or press Command-N.
Select Source in the OS X section and the Swift File template.

This file will contain the definition for a Monster class that will be used to model a monster’s
properties and town-terrorizing activities. Start by creating a new class.

Listing 15.9 Monster setup (Monster.swift)
import Foundation

class Monster {

}

The syntax to define a new class instance is nearly identical to the syntax used to define a new struct
instance. You begin with the keyword class, followed by the name you are assigning to your new
class. And, as before, the definition of the class takes place between the braces: {}.

For reasons relating to inheritance (discussed in the next section), the class Monster is defined in very
general terms. This means that the Monster class will describe the general behavior of a monster. Later
you will create different kinds of monsters that will have specific behaviors.

Listing 15.10 Defining the Monster class (Monster.swift)
class Monster {
 var town: Town?
 var name = "Monster"

 func terrorizeTown() {
 if town != nil {
 print("\(name) is terrorizing a town!")
 } else {
 print("\(name) hasn't found a town to terrorize yet...")
 }
 }
}

It is well known that monsters do one thing very well: they terrorize towns. The Monster class has an
optional property for the town that a given monster is terrorizing. Recall that optionals are used when
an instance may become nil. Because the monster may or may not have found a town to terrorize
yet, the town property is an optional (Town?), and starts out nil. You also create a property for the
Monster’s name and give it a generic default value.

Next, define a basic stub for a method called terrorizeTown(). This method will be called on an
instance of Monster to represent the monster terrorizing a town.

From the Library of wu yuan

ptg16315837

Chapter 15 Structs and Classes

156

Notice that you check whether the instance has a town: if town != nil. If it does, then
terrorizeTown() will log to the console the name of the monster wreaking havoc. If the instance does
not have a town yet, then the method will log that information.

As each sort of monster will terrorize a town differently, subclasses will provide their own
implementation of this function. You will learn about subclasses in the next section.

Switch to main.swift to exercise the Monster class. Add an instance of this type, give it a town, and
call the terrorizeTown() function on it.

Listing 15.11 Setting a generic monster loose (main.swift)
var myTown = Town()
myTown.changePopulation(500)
myTown.printTownDescription()
let gm = Monster()
gm.town = myTown
gm.terrorizeTown()

First, you create an instance of the Monster type called gm (for “generic monster”). This instance is
declared as a constant because there is no need for it to be mutable. Next, you assign myTown to gm’s
town property. Finally, you call the terrorizeTown() function on the Monster instance. Run the
program, and Monster is terrorizing a town! logs to the console.

Inheritance
One of the main features of classes that structures do not have is inheritance. Inheritance is a
relationship in which one class, a subclass, is defined in terms of another, a superclass. The subclass
inherits the properties and methods of its superclass. In a sense, inheritance defines the genealogy of
class types.

The fact that classes can take advantage of inheritance is the primary reason you made the Monster
type a class. You are going to create subclasses of Monster class to represent different kinds of
monsters. Let’s start with a Zombie subclass to see this relationship in practical terms.

A zombie subclass
Create a new Swift file called Zombie, following the same steps as you did to create Town.swift and
Monster.swift.

This file will hold the definition of a new class describing a zombie. The Zombie class will inherit from
the Monster class. Add the following class declaration to see how.

Listing 15.12 Zombie creation (Zombie.swift)
import Foundation

class Zombie: Monster {
 var walksWithLimp = true

 override func terrorizeTown() {
 town?.changePopulation(-10)
 super.terrorizeTown()
 }
}

From the Library of wu yuan

ptg16315837

Inheritance

157

Your new class defines a type called Zombie. It inherits from the Monster type, which is indicated by
the colon (:) after Zombie. Inheriting from Monster means that Zombie has all of Monster’s properties
and methods, like the town property and the terrorizeTown() function used here.

Zombie also adds a new property. The property is called walksWithLimp and is of type Bool. This type
is inferred from the property’s default value: true.

Finally, Zombie overrides the terrorizeTown() function. Overriding a method means that a subclass
provides its own definition of a method that is defined on its superclass. Note the use of the override
keyword. Failing to use this keyword when overriding a method will result in a compiler error.

Figure 15.10 shows Zombie’s relationship to Monster.

Figure 15.10 Zombie inheritance

Zombie inherits the properties town and name from the Monster class. It also inherits the
terrorizeTown() method, but provides an override, which is why it is listed in both areas in the figure.
Last, Zombie adds a property of its own: walksWithLimp.

Notice the line super.terrorizeTown() in Listing 15.12. super is a prefix used to access a
superclass’s implementation of a method. In this case, you use super to call the Monster class’s
implementation of terrorizeTown().

Because super is predicated on the idea of inheritance, it is not available to value types like enums or
structs. It is invoked to borrow or override functionality from a superclass.

From the Library of wu yuan

ptg16315837

Chapter 15 Structs and Classes

158

Recall that Zombie’s town property, inherited from the Monster class, is an optional of type Town?.
The fact that town is an optional means that it can potentially be nil. You need to make sure that an
instance of Zombie has a town to terrorize before calling any methods on the town. How can you check
this?

One possible solution is to use optional binding. You may be tempted to try something like this:

if let terrorTown = town {
 // Do something to terrorTown
}

In the code above, if the Zombie instance has a town, then the value in the optional is unwrapped and
put into the constant terrorTown. After that, this value is ready to be terrorized, but with an important
caveat: the value semantics of structs means that the terrorTown instance will not be the same as the
town instance. Why? Because value types, including structs, are always copied when you pass them
around in your code.

The problem with this is that any changes made on terrorTown will not be reflected in the Zombie
instance’s town property. In addition to this limitation, this code could also be more concise. In short,
this is not an ideal solution.

As you saw in Chapter 8, optional chaining allows a check like this to be done on a single line. It is
just as expressive and is also more concise. Furthermore, the copy problem described above is avoided
because the Town instance of interest is changed directly.

You have already used optional chaining in MonsterTown. Look back at Listing 15.12. The code
town?.changePopulation(-10) makes sure it is safe to call a function on the town instance. If the
optional town has a value, then the method changePopulation() is called on that instance, and the
population is decreased by 10 people. In a moment, you will use optional chaining like this to call
printTownDescription() on a zombie’s town.

Preventing overriding
Sometimes you want to prevent subclasses from being able to override methods or properties. The
need to do this is rare in practice, but it does come up occasionally. In these cases, you use the final
keyword to prevent a method or property from being overridden.

Imagine, for example, that you specifically do not want subclasses of the Zombie type to provide their
own implementation of the terrorizeTown() function. In other words, all subclasses of Zombie should
terrorize their towns in the exact same way. Add the final keyword to this function’s declaration.

Listing 15.13 Preventing overriding of terrorizeTown() (Zombie.swift)
class Zombie: Monster {
 var walksWithLimp = true

 final override func terrorizeTown() {
 town?.changePopulation(-10)
 super.terrorizeTown()
 }
}

From the Library of wu yuan

ptg16315837

Inheritance

159

Now, subclasses of the Zombie class will not be able to override the terrorizeTown() function. Go
ahead and create a new subclass of Zombie (in a new Swift file, as before) and name it ZombieBoss. Try
to override the terrorizeTown() function.

Listing 15.14 Zombie bosses causing trouble (ZombieBoss.swift)
import Foundation

class ZombieBoss: Zombie {
 override func terrorizeTown() {
 print("terrorizing town...")
 }
}

You should see the following error on the line where you try to override the terrorizeTown() method:
Instance method overrides a ‘final’ instance method. The error is telling you that you cannot
override terrorizeTown() because it is marked as final in the superclass.

Go ahead and delete the ZombieBoss.swift file. You will not be using it again. Select the file in the
project navigator and press Delete on your keyboard. Choose Move to Trash in the pop-up.

Your town has a zombie problem
Now is a good time to exercise the Zombie type. Choose the main.swift file from the project navigator.
Create an instance of the Zombie class. (Note that you delete the code that prints the town’s description
to free the console from clutter. You also delete the code that created a generic instance of the Monster
type as you no longer need it.)

Listing 15.15 Who’s afraid of fredTheZombie? (main.swift)
var myTown = Town()
myTown.changePopulation(500)
myTown.printTownDescription()
let gm = Monster()
gm.town = myTown
gm.terrorizeTown()
let fredTheZombie = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printTownDescription()

You first create a new instance of the Zombie type named fredTheZombie. Next, you assign your
preexisting instance of the Town type, myTown, to the Zombie type’s property town. At this point,
fredTheZombie is free to terrorize myTown, which he will do with alacrity. (Or, at least, as much alacrity
as a zombie can muster.)

After fredTheZombie has terrorized the townsfolk, you check the results with the
printTownDescription(). As discussed earlier, because fredTheZombie’s town property is an optional
of type Town?, you have to unwrap it before you can call the printTownDescription() function on it.
You do this with optional chaining: fredTheZombie.town?. This code ensures that fredTheZombie has
a town before you try to use printTownDescription().

After fredTheZombie is done terrorizing its town, the console output should read: "Population:
5912; number of stoplights: 4".

From the Library of wu yuan

ptg16315837

Chapter 15 Structs and Classes

160

Method Parameter Names
Recall from Chapter 12 that the first parameter name is by default not used when calling a function or
method. This convention impacts both how we name functions and how we name parameters.

To see this in action, open Zombie.swift and add a new method to change the name and limp status of
an instance of the Zombie class.

Listing 15.16 changeName(_:walksWithLimp:) (Zombie.swift)
class Zombie: Monster {
 var walksWithLimp = true

 final override func terrorizeTown() {
 town?.changePopulation(-10)
 super.terrorizeTown()
 }

 func changeName(name: String, walksWithLimp: Bool) {
 self.name = name
 self.walksWithLimp = walksWithLimp
 }
}

changeName(_:walksWithLimp:) is a simple method that allows a developer to change a Zombie’s
name and walksWithLimp properties. Because name is not used when calling the method, it is stylish
in Swift to place the name of the first parameter at the end of the method name. This convention is a
common pattern in naming methods in iOS and Mac OS X frameworks, and helps to identify all of the
method’s parameters.

Switch to main.swift to exercise this function and see how it is called.

Listing 15.17 Fred the Zombie (main.swift)
...
fredTheZombie.changeName("Fred the Zombie", walksWithLimp: false)

Here, you call changeName(_:walksWithLimp:) on fredTheZombie. Notice that the name of the first
parameter is omitted in the call (but it is the last word in the method’s name), and the name of the
second parameter is used. The result of this line is that fredTheZombie’s name property is assigned the
string "Fred the Zombie" and its walksWithLimp property is set to false.

What Should I Use?
The question of when to use a struct or a class is a difficult one. The answer involves understanding the
differences between value types and reference types. We discuss the nuances of each in Chapter 18 and
provide guidance on when to use both properly.

From the Library of wu yuan

ptg16315837

Bronze Challenge

161

Bronze Challenge
There is currently a bug in the Zombie type. If an instance of Zombie terrorizes a town with a
population of 0, then its population will decrement to -10. This result does not make sense. Fix this
bug by changing the terrorizeTown() function on the Zombie type to only decrement the town’s
population if its population is greater than 0. Also, make sure that the town’s population is set to 0 if
the amount to decrement is greater than the current population.

Silver Challenge
Create another subclass of the Monster type. Call this one Vampire. Override the terrorizeTown()
function so that every time an instance of the Vampire type terrorizes a town, it adds a new vampire
thrall to an array of vampires on the Vampire type. This array of vampire thralls should be empty by
default. Terrorizing a town should also decrement the town’s population by one. Last, exercise this
Vampire type in main.swift.

From the Library of wu yuan

ptg16315837

Chapter 15 Structs and Classes

162

For the More Curious: Type Methods
In this chapter, you defined some instance methods that were called on instances of a type. For
example, terrorizeTown() is an instance method that you can call on instances of the Monster type.
You can additionally define methods that are called on the type itself. These are called type methods.
Type methods are useful for working with type-level information.

Imagine a struct named Square:

struct Square {
 static func numberOfSides() -> Int {
 return 4
 }
}

For value types, you indicate that you are defining a type method with the static keyword. The
method numberOfSides() simply returns the number of sides a Square can have.

In distinction, type methods on classes use the class keyword. Here is a type method on the Zombie
class that represents the universal zombie catchphrase.

class Zombie: Monster {
 class func makeSpookyNoise() -> String {
 return "Brains..."
 }

 var walksWithLimp = true

 override func terrorizeTown() {
 town?.changePopulation(-10)
 }
}

To use type methods, you simply call them on the type itself:

let sides = Square.numberOfSides() // sides is 4
let spookyNoise = Zombie.makeSpookyNoise() // spookyNoise is "Brains..."

Type methods can work with type-level information on a given type. This means that type methods can
call other type methods and can even work with type properties, which we will discuss in Chapter 16.
Note, however, that type methods cannot call instance methods or work with any instance properties.
The reason for this limitation is that an instance is not available for use at the type level.

From the Library of wu yuan

ptg16315837

For the More Curious: Function Currying

163

For the More Curious: Function Currying
After working through this chapter, you might be wondering about the mutating keyword. Why is it
needed to allow you to modify a struct or enum? The concept of function currying helps to explain the
answer.

Create a new playground called Curry.playground.

Function currying allows you to rewrite an existing function that takes multiple parameters as a new
function that takes one parameter and returns another function. The function you return takes the
original function’s remaining parameters and returns what the original function returns. This process
of nesting functions, each with the remaining number of parameters, continues until there are no
remaining parameters.

The rewritten function is called a curried function. A curried function partially applies an existing
function. That is, a curried function allows you to bind values to a function’s arguments before you call
it. This feature of curried functions is similar to supplying default values to a function’s parameters, but
is far more dynamic.

Add a simple function to your playground that returns a String greeting.

Listing 15.18 A simple greeting function
func greetName(name: String, withGreeting greeting: String) -> String {
 return "\(greeting) \(name)"
}

The greetName(_:withGreeting:) function takes two arguments: a name and a greeting. It constructs
and returns a greeting based on these two arguments. This function is straightforward to use.

Listing 15.19 Using greetName(_:withGreeting:)
func greetName(name: String, withGreeting greeting: String) -> String {
 return "\(greeting) \(name)"
}

let personalGreeting = greetName("Matt", withGreeting: "Hello,")
print(personalGreeting)

From the Library of wu yuan

ptg16315837

Chapter 15 Structs and Classes

164

Now, rewrite greetName(_:withGreeting:) to be a curried function.

Listing 15.20 Curried greetingForName(_:)
func greetName(name: String, withGreeting greeting: String) -> String {
 return "\(greeting) \(name)"
}

let personalGreeting = greetName("Matt", withGreeting: "Hello,")
print(personalGreeting)

func greetingForName(name: String) -> (String) -> String {
 func greeting(greeting: String) -> String {
 return "\(greeting) \(name)"
 }
 return greeting
}

The function greetingForName(_:) takes one argument, the String name, and returns a function. This
returned function itself takes a String, representing the greeting, and returns a String with a greeting
for the given name.

You define a nested function called greeting(_:) inside of the implementation of
greetingForName(_:). greeting(_:)’s function type matches the type specified by
greetingForName(_:): it takes a String and returns a String. Notice that you combine the greeting
parameter with the name parameter from the two functions to construct the personalized greeting.

Finally, you return the greeting(_:) function.

Add the following code to exercise the curried function.

Listing 15.21 Using the curried function
func greetName(name: String, withGreeting greeting: String) -> String {
 return "\(greeting) \(name)"
}

let personalGreeting = greetName("Matt", withGreeting: "Hello,")
print(personalGreeting)

func greetingForName(name: String) -> (String) -> String {
 func greeting(greeting: String) -> String {
 return "\(greeting) \(name)"
 }
 return greeting
}

let greeterFunction = greetingForName("Matt")
let theGreeting = greeterFunction("Hello,")
print(theGreeting)

You call the greetingForName(_:) function and pass in the desired name to greet ("Matt"). The result
is assigned to a constant named greeterFunction. greeterFunction holds a function that matches
the return type of greetingForName(_:): It takes a String and returns a String. The specific name,
"Matt", is passed along in the enclosing scope of the greeting(_:) function that is returned by
greetingForName(_:).

From the Library of wu yuan

ptg16315837

For the More Curious: Function Currying

165

To make a personalized greeting for a specific name, you call the greeterFunction(_:) function
and pass in a greeting (here, "Hello,") to its only parameter. The result of this function is assigned to
theGreeting, which you log to the console. You should see the same result log to the console.

Thankfully, Swift supplies a more convenient syntax for writing curried functions. The example below
is equivalent to what you have just written.

Listing 15.22 A more concise curried function
func greetName(name: String, withGreeting greeting: String) -> String {
 return "\(greeting) \(name)"
}

let personalGreeting = greetName("Matt", withGreeting: "Hello,")
print(personalGreeting)

func greetingForName(name: String) -> (String) -> String {
 func greeting(greeting: String) -> String {
 return "\(greeting) \(name)"
 }
 return greeting
}

let greeterFunction = greetingForName("Matt")
let theGreeting = greeterFunction("Hello,")
print(theGreeting)

func greeting(greeting: String)(name: String) -> String {
 return "\(greeting) \(name)"
}

let friendlyGreeting = greeting("Hello,")
let newGreeting = friendlyGreeting(name: "Matt")
print(newGreeting)

The greeting(_:name:) function’s syntax looks a little different from what you just saw. This time,
you separate each argument by enclosing each parameter within its own parentheses. Notice that this
syntax is more concise, but it gives the same result.

Calling this curried function works very much like your earlier implementation. You call
greeting(_:name:) and pass in a String greeting to its first argument. The resulting function is
assigned to a constant called friendlyGreeting. Next, you call the function in friendlyGreeting
and pass in a name to greet. Note that the second argument, name, was automatically given an external
name that you had to use.

Check the console. The results should be the same.

From the Library of wu yuan

ptg16315837

Chapter 15 Structs and Classes

166

Now that you understand how function currying works, let’s return to the mutating keyword. Create a
new struct called Person.

Listing 15.23 Creating a Person

...

let friendlyGreeting = greeting("Hello,")
let newGreeting = friendlyGreeting(name: "Matt")
print(newGreeting)

struct Person {
 var firstName = "Matt"
 var lastName = "Mathias"

 mutating func changeName(fn: String, ln: String) {
 firstName = fn
 lastName = ln
 }
}

There is nothing very special or unfamiliar taking place here. The Person struct has properties for a
person’s first and last names. It also defines a mutating function to change these properties.

Create a new instance of the Person.

Listing 15.24 Creating a new instance of Person

...

let friendlyGreeting = greeting("Hello,")
let newGreeting = friendlyGreeting(name: "Matt")
print(newGreeting)

struct Person {
 var firstName = "Matt"
 var lastName = "Mathias"

 mutating func changeName(fn: String, ln: String) {
 firstName = fn
 lastName = ln
 }
}
var p = Person()

There is nothing new here either, but here is where things start to get interesting. It turns out that
Swift’s instance methods, the very ones that you learned about in this chapter, are actually curried
functions. Type in the following code to see this in action.

From the Library of wu yuan

ptg16315837

For the More Curious: Function Currying

167

Listing 15.25 Instance methods are curried functions
...

let friendlyGreeting = greeting("Hello,")
let newGreeting = friendlyGreeting(name: "Matt")
print(newGreeting)

struct Person {
 var firstName = "Matt"
 var lastName = "Mathias"

 mutating func changeName(fn: String, ln: String) {
 firstName = fn
 lastName = ln
 }
}

var p = Person()
let changer = Person.changeName

You can access the changeName() function on the Person struct. Notice that you are not calling the
changeName() function (i.e., you omit the () after changeName). Instead, you are assigning it to a
constant called changer.

Just what is changer? To find out, hold down the Option key and click on the word changer. You
should see something like Figure 15.11. (Incidentally, you should also see the same function signature
in the playground’s result sidebar.)

Figure 15.11 A curried function signature

What does that signature mean? In short, it tells you that changer is a curried function. More
specifically, changer holds a function whose only argument is an instance of the Person struct passed
in as an inout parameter. This function returns a function that takes two arguments, a String for the
new first name and a String for the new last name. The resulting function returns nothing.

Recall from Chapter 12 that an inout parameter allows a function to modify the value passed into that
parameter. The changes on the inout parameter made within the function also persist outside of the
function after it is called. In other words, the modifications replace the parameter’s original value.

Putting all of this information together, a mutating function is simply a curried function whose first
argument is self, passed in as an inout parameter. Because value types are copied when they are
passed, for nonmutating methods self is actually a copy of the value. In order to make changes, self
needs to be declared as inout, and mutating is the way Swift allows you to accomplish that.

From the Library of wu yuan

ptg16315837

Chapter 15 Structs and Classes

168

Type in the following to demonstrate this point and to see changer in action.

Listing 15.26 changer in action
...

let friendlyGreeting = greeting("Hello,")
let newGreeting = friendlyGreeting(name: "Matt")
print(newGreeting)

struct Person {
 var firstName = "Matt"
 var lastName = "Mathias"

 mutating func changeName(fn: String, ln: String) {
 firstName = fn
 lastName = ln
 }
}

var p = Person()
let changer = Person.changeName
changer(&p)("John", ln: "Gallagher")
p.firstName // John

You call changer’s function, passing in the instance of Person that you want to modify. Remember
that you need to prefix inout parameters with an & to ensure that you pass in the instance’s reference
to the function. Next, you give two strings ("John" and "Gallagher") to the curried function’s final
two parameters, one each for the first and last names. These strings are used to modify the Person
instance’s values for those properties. Last, you print out the result of the function call to confirm that
p’s first name has been changed to John.

The point of this section was to show what the keyword mutating does. In practice, you will likely not
want to use function currying to mutate a struct. Go ahead and remove the function currying code, and
make use of a name-changing function more directly. The result will be the same.

Listing 15.27 Using changeName(_:ln:) instead of changer
...

let friendlyGreeting = greeting("Hello,")
let newGreeting = friendlyGreeting(name: "Matt")
print(newGreeting)

struct Person {
 var firstName = "Matt"
 var lastName = "Mathias"

 mutating func changeName(fn: String, ln: String) {
 firstName = fn
 lastName = ln
 }
}

var p = Person()
let changer = Person.changeName
changer(&p)("John", ln: "Gallagher")
p.changeName("John", ln: "Gallagher")
p.firstName // John

From the Library of wu yuan

ptg16315837

169

16
Properties

Chapter 15 introduced properties in a limited way. Its focus was on structures and classes, but you also
gave your types some basic stored properties so that they had data to represent. This chapter discusses
properties in detail and will deepen your understanding of how to use them with your custom types.

Properties model the characteristics of the entity that a type represents. They do this by associating
values with the type. The values properties can take may be constant or variable values. Classes,
structures, and enumerations can all have properties.

Properties can be of two varieties: stored and computed. Stored properties can be given default values,
and computed properties can return the result of some calculation based on available information.
You can observe properties for changes and can execute specific code when the property is set to
a new value. You can even establish rules that determine properties’ visibility to other files in your
application.

In short, properties have a lot of power and flexibility. Let’s see what they can do.

Basic Stored Properties
Stored properties are properties in their most basic form. To see how they work, you will be expanding
the behavior of the types you developed in Chapter 15. Start by making a copy of your MonsterTown
project. Find and click on the folder called MonsterTown in your filesystem. Press Command-C on
your keyboard, then press Command-V to create the copy. Open the new folder and double-click
MonsterTown.xcodeproj to launch Xcode and open your copied project.

Open Town.swift. Take a look at the declaration of your population property: var population =
5422. This code signifies three important items.

• var marks this property as variable, which means that it can be mutated.

• population has a default value of 5422.

• population is a stored property whose value can be read and set.

How can you tell that population is a stored property? Because it holds on to a piece of information –
the town’s population. That is what stored properties do: they store data.

population is a read/write property. You can both read the property’s value and set the property’s
value. You can also make stored properties read-only, so that their values cannot be changed. Read-
only properties are known by their more familiar name: constants.

From the Library of wu yuan

ptg16315837

Chapter 16 Properties

170

Use let to create a read-only property storing information about what region the town you are
modeling is in. After all, towns cannot move, so they are always in the same region.

Listing 16.1 Adding a region constant (Town.swift)
struct Town {
 let region = "South"
 var population = 5422
 var numberOfStoplights = 4

 func printTownDescription() {
 print("Population: \(population);
 number of stoplights: \(numberOfStoplights)")
 }

 mutating func changePopulation(amount: Int) {
 population += amount
 }
}

This implementation of region is fine for now, but it has a flaw. We will explain the problem and show
you a better solution later in the chapter.

Nested Types
Nested types are types that are defined within another enclosing type. They are often used to support
the functionality of a type and are not intended to be used separately from that type. You have seen
nested functions already, which are similar.

Enumerations are frequently nested. In Town.swift, create a new enumeration called Size. You will
be using this enumeration, in coordination with another new property to be added later, to calculate
whether the town can be designated as small, medium, or large. Make sure that you define the enum
within the definition for the Town struct.

Listing 16.2 Setting up the Size enum (Town.swift)
struct Town {
 let region = "South"
 var population = 5422
 var numberOfStoplights = 4

 enum Size {
 case Small
 case Medium
 case Large
 }

 func printTownDescription() {
 print("Population: \(population);
 number of stoplights: \(numberOfStoplights)")
 }

 mutating func changePopulation(amount: Int) {
 population += amount
 }
}

From the Library of wu yuan

ptg16315837

Lazy Stored Properties

171

Because Size is defined within the braces ({}) of the Town struct’s definition, it will not (and cannot)
be used outside of Town.

Size will determine what size of town an instance of the Town type is. The instance of Town will need
a value in its population property before this nested type is used. All of the properties you have
worked with so far have calculated the property’s value when the instance was created. The next
section introduces a new sort of property that delays the computation of its value until the necessary
information is available.

Lazy Stored Properties
Sometimes a stored property’s value cannot be assigned immediately. The necessary information may
be available but computing the values of a property immediately would be costly in terms of memory
or time. Or, perhaps a property depends on factors external to the type that will be unknown until after
the instance is created. These circumstances call for lazy loading.

In terms of properties, lazy loading means that the calculation of the property’s value will not occur
until the first time it is needed. This delay defers computation of the property’s value until after the
instance is initialized. This means that lazy properties must be declared with var, because their values
will change.

Create a new lazy property called townSize. Make it of type Size, because its value will be an
instance of the Size enum. Again, make sure to define this new property inside of the Town type.

Listing 16.3 Setting up townSize (Town.swift)
struct Town {
 ...
 enum Size {
 case Small
 case Medium
 case Large
 }
 lazy var townSize: Size = {
 switch self.population {
 case 0...10000:
 return Size.Small

 case 10001...100000:
 return Size.Medium

 default:
 return Size.Large
 }
 }()
 func printTownDescription() {
 print("Population: \(population);
 number of stoplights: \(numberOfStoplights)")
 }
 ...
}

townSize looks different than the properties that you have written before. Let’s go through this code
step by step.

From the Library of wu yuan

ptg16315837

Chapter 16 Properties

172

First, you mark townSize as lazy. This means that townSize’s value will only be calculated when it is
first accessed. The need for this will become clear in a moment.

Next, you declare the type of the property as Size. You will not be setting the value of this property
directly, as you have done with other properties. For example, you will not be writing code like
this: myTown.townSize = Size.Small. Instead, you will take advantage of the nested enum Size in
coordination with a closure to calculate the town’s size given its population.

townSize sets a default property value, the town’s size, with the result returned by a closure (notice
the opening brace: lazy var townSize: Size = {). Recall that functions and closures are first-class
types and that properties can reference functions and closures.

A closure works well here because the value of the town’s population is needed in order to determine
the town’s size. The closure uses a switch statement to determine the size of the town. Put another
way, the closure “switches over” the instance’s population (self.population). The self reference in
this line is important and we will return to it in a moment.

Inside of the switch statement, you specify three cases. A town with a population of 0...10000 is
a small town and 10001...100000 is a medium-sized town. The third case is a default case that
captures any population larger than 100,000 and describes it as a large town. The case bodies return
an instance of the enum Size that matches the given population.

Notice that the closure for townSize ends with empty parentheses after the final brace }(). These
parentheses, combined with the lazy marking, ensure that Swift will call the closure and assign the
result it returns to townSize when the property is accessed for the first time. If you had omitted the
parentheses, you would simply be assigning a closure to the townSize property. With the parentheses,
the closure will be executed the first time you access the townSize property.

Finally, let’s return to the importance of the self reference in self.population and the need for
townSize to be lazy. If a closure works with an instance’s properties, then the compiler requires that
the closure use self when accessing any property on that instance. The requirement to use self
explicitly inside of a closure is a reminder to developers that the closure is capturing a reference to the
instance in order to access its properties. This capture may cause a memory leak if the closure is stored
in a property, and so they need to be careful. (Do not worry about memory management issues right
now; they will be discussed in Chapter 24.)

Because the closure needs to reference self in order to gain access to the instance’s population
property, the property townSize needs to be marked as lazy in order to ensure that the instance (what
self references) is fully prepared to do work.

Switch to main.swift to exercise this lazy property.

Listing 16.4 Using the lazy townSize property (main.swift)
var myTown = Town()
let ts = myTown.townSize
print(ts)
myTown.changePopulation(500)
let fredTheZombie = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printTownDescription()
fredTheZombie.changeName("Fred the Zombie", walksWithLimp: false)

From the Library of wu yuan

ptg16315837

Lazy Stored Properties

173

Here, you create a constant named ts to hold myTown’s size information. This line accesses the
lazy property townSize and causes its closure to execute. After the closure switches over myTown’s
population, an instance of the Size enum is assigned to ts. Next, you print the value of the ts
constant. As a result, when you run the program Small logs to the console.

It is important to note that properties marked with lazy are calculated only one time. This feature of
lazy means that changing the value of myTown’s population will never cause myTown’s townSize to
be recalculated. To see this, increase myTown’s population by 1,000,000 and then check myTown’s size
by logging it to the console. Include myTown’s population to compare against what is reported for
townSize.

(Note that from here on we will be showing small changes within a line of code inline, rather than
showing the entire line deleted and re-entered with the change. In the first change shown below, for
example, (500) is replaced with (1000000).)

Listing 16.5 Changing myTown’s population does not change townSize
(main.swift)
var myTown = Town()

let ts = myTown.townSize
print(ts)

myTown.changePopulation(500)(1000000)
print("Size: \(myTown.townSize); population: \(myTown.population)")
let fredTheZombie = Zombie()
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printTownDescription()
fredTheZombie.changeName("Fred the Zombie", walksWithLimp: false)

Run the program, and you will see the following line in the console: Size: Small; population:
1005422. myTown’s size has not changed, even though its population increased dramatically. This
discrepancy is due to townSize’s lazy nature. The property is only calculated when it is first accessed
and is not recalculated thereafter.

This kind of discrepancy between myTown’s population and townSize is undesirable. It seems that
townSize should not be marked lazy, if lazy means that myTown will not be able to recalibrate its
townSize to reflect population changes.

In the right circumstances, lazy loading is a powerful tool. You will use it again in Chapter 27. But, in
this case, it is not the best tool for the job. A computed property is a better option.

From the Library of wu yuan

ptg16315837

Chapter 16 Properties

174

Computed Properties
You can use computed properties with any class, struct, or enum that you define. Computed properties
do not store values like the properties that you have been working with thus far. Instead, a computed
property provides a getter and optional setter to retrieve or set the property’s value. This difference
allows the value of a computed property to change, unlike the value of a lazy stored property.

Replace your definition of the townSize property on the Town type with a computed read-only property.

Listing 16.6 Using a computed property (Town.swift)
...
lazy var townSize: Size = {
var townSize: Size {
 get {
 switch self.population {
 case 0...10000:
 return Size.Small

 case 10001...100000:
 return Size.Medium

 default:
 return Size.Large
 }
 }
}()
...

The changes here may look small. You delete lazy and the = in the first line, add a new second line
with a get statement (and its ending brace, after the switch statement), and delete the parentheses in the
final line. That is all. But those small changes have a big impact.

townSize is now defined as a computed property declared, like all computed properties, with the var
keyword. It provides a custom getter that uses the same switch statement that you used before. Notice
that you explicitly declare the type of the computed property to be Size. You must provide computed
properties with their type information. This information helps the compiler know what the property’s
getter should return.

You access this property via dot syntax: myTown.townSize, so the code you already added to
main.Swift does not need to be changed. Accessing the property executes the getter for townSize,
which results in using myTown’s population to calculate the townSize. Run your program again. You
will see Size: Large; population: 1005422 logged to the console.

townSize is now a read-only computed property. In other words, townSize cannot be set directly. It
can only retrieve and return a value based upon the calculation you defined in the getter. A read-only
property is perfect in this case because you want myTown to calculate its townSize based upon the
instance’s population, which may change at runtime.

From the Library of wu yuan

ptg16315837

A getter and a setter

175

A getter and a setter
Computed properties can also be declared with both a getter and a setter. A getter allows you to read
data from a property. A setter allows you to write data to the property. Properties with both a getter
and a setter are called read/write. Open your Monster.swift file and add a computed property to the
declaration for the Monster.

Listing 16.7 Creating a computed victimPool property with a getter and a setter
(Monster.swift)
class Monster {
 var town: Town?
 var name = "Monster"
 var victimPool: Int {
 get {
 return town?.population ?? 0
 }
 set(newVictimPool) {
 town?.population = newVictimPool
 }
 }
 func terrorizeTown() {
 if town != nil {
 print("\(name) is terrorizing a town!")
 } else {
 print("\(name) hasn't found a town to terrorize yet...")
 }
 }
}

Imagine that you need each instance of Monster to keep track of its potential pool of victims.
This number will match the population of the town that the monster is terrorizing. Accordingly,
victimPool is a new computed property with both a getter and a setter. As before, you declare it as a
var and give it specific type information. In this case, victimPool is an Int.

In the property’s definition, you define a getter for the property via the same get that you use for
townSize. The getter uses the nil coalescing operator to check whether the Monster instance has a
town that it is currently terrorizing. If it does, then it returns the value of that town’s population. If the
instance has not yet found a town to terrorize, it simply returns 0.

The setter for the computed property is written within the set block. Notice the new syntax:
set(newVictimPool). Specifying newVictimPool within the parentheses means that you are supplying
an explicitly named new value. You can refer to this variable within the setter’s implementation. For
example, you use optional chaining to ensure that the Monster instance has found a town, and then set
that town’s population to match newVictimPool. If you had not explicitly named the new value, Swift
would have provided a variable for you called newValue to hold on to the same information.

Switch back to main.swift to use this new computed property. Add the code below to the bottom of
the file.

Listing 16.8 Using victimPool (main.swift)
...
print("Victim pool: \(fredTheZombie.victimPool)")
fredTheZombie.victimPool = 500
print("Victim pool: \(fredTheZombie.victimPool);
 population: \(fredTheZombie.town?.population)")

From the Library of wu yuan

ptg16315837

Chapter 16 Properties

176

The first new line exercises the getter for the computed property. Run the program and Victim pool:
1005412 logs to the console. The next new line uses the setter to change fredTheZombie’s victimPool:
fredTheZombie.victimPool = 500. Last, you once again log the victimPool to the console via
the property’s getter. In the console, the victimPool should be updated to be 500, and the town’s
population should match this change.

Notice that the output for the town’s population is listed as Optional(500). This looks different from
the output for victimPool, and this is because fredTheZombie’s town property is optional. If you are
curious about what is causing this difference, Chapter 22 discusses how optionals are put together.

Property Observers
Swift provides an interesting feature called property observation. Property observers watch for and
respond to changes in a given property. Property observation is available to any stored property that
you define and is also available to any property that you inherit. You cannot use property observers
with computed properties that you define. (But you have full control over the definition of a computed
property’s setter and getter, and can respond to changes there.)

Imagine that the citizens of your beleaguered town are getting restless. They demand that the mayor do
something to protect them from the monstrous pox patrolling the countryside. The mayor’s first action
is to track the attacks on the townspeople. Property observers are perfect for this task.

You can observe changes to a property in one of two ways:

• when a property is about to change, via willSet

• when a property did change, via didSet

In order to keep track of how many attacks the town is suffering, the mayor decides to pay close
attention to when the population of the town changes. Use a didSet observer to be notified right after
the property receives a new value.

Listing 16.9 Observing population changes (Town.swift)
struct Town {
...
 var population = 5422 {
 didSet(oldPopulation) {
 print("The population has changed to \(population)
 from \(oldPopulation).")
 }
 }
 ...
}

The syntax for property observers looks similar to computed properties’ getters and setters. The
response to the change is defined within the braces. In the example above, you create a custom
parameter name for the old population: oldPopulation. The didSet observer gives you a handle on
the property’s old value. (In distinction, the willSet observer gives you a handle on the new value
of the property.) If you had not specified a new name, Swift would have given you the parameter
oldValue automatically. (For a willSet observer, Swift generates a newValue parameter.)

From the Library of wu yuan

ptg16315837

Type Properties

177

This property observer logs the town’s population information to the console every time it changes.
This means that you should see a log for the population change after fredTheZombie terrorizes the
town. Run the program and take a look at the console. It should look like the output shown below, with
a log for every time the population changes.

Small
The population has changed to 1005422 from 5422.
Size: Large; population: 1005422
The population has changed to 1005412 from 1005422.
Monster is terrorizing a town!
Population: 1005412; number of stoplights: 4
Victim pool: 1005412
The population has changed to 500 from 1005412.
Victim pool: 500; population: Optional(500)

Because you are logging changes to population with a property observer, you no longer need to log
the population change in main.swift after you update the victimPool. Remove that code from the call
to print() at the bottom of main.swift.

Listing 16.10 Removing population from print() (main.swift)
...
print("Victim pool: \(fredTheZombie.victimPool)")
fredTheZombie.victimPool = 500
print("Victim pool: \(fredTheZombie.victimPool);
 population: \(fredTheZombie.town?.population)")

Type Properties
Up to now, you have been working with instance properties. Whenever you create a new instance of a
type, that instance gets its own properties that are distinct from other instances of that type. Instance
properties are useful for storing and computing values on an instance of a type, but what about values
that belong to the type itself?

You can also define type properties. These are properties that are universal to the type – the values in
these properties will be shared across all of the type’s instances. These properties store information that
will be the same across all instances. For example, all instances of a Square type will have exactly four
sides, so the number of sides for Square might be stored in a type property.

Value types (i.e., structures and enumerations) can take both stored and computed type properties. As
with type methods, type properties on value types begin with the static keyword.

Recall that earlier in the chapter you created a constant read-only property on the Town type for the
town’s region. This use of a constant instance property made every instance of Town be in the same
region: the South. That means all instances of Town will share this information. A type property works
better for the region property because you are modeling the region “South” as universal to the type.
Change Town to reflect this revision.

Listing 16.11 Making region a stored type property (Town.swift)
struct Town {
 static let region = "South"
 ...
}

From the Library of wu yuan

ptg16315837

Chapter 16 Properties

178

Stored type properties have to be given a default value. This requirement makes sense because types do
not have initializers (which are the topic of Chapter 17). This means that the stored type property has to
have all the information it needs in order to vend its value to any caller. Here, region is given the value
South.

Classes can also have stored and computed type properties, which use the same static syntax as
structs. Subclasses cannot override a type property from their superclass. If you want a subclass to be
able to provide its own implementation of the property, you use the class keyword instead.

In a For the More Curious section in Chapter 15, we showed you a type method on the Zombie type to
make a spooky noise:

class Zombie: Monster {
 class func makeSpookyNoise() -> String {
 return "Brains..."
 }

Notice that makeSpookyNoise() does not take any arguments. This makes it a great candidate for being
a computed type property and not a method. Open Zombie.swift and add a computed type property for
a zombie’s catchphrase.

Listing 16.12 Creating the spookyNoise computed type property
(Zombie.swift)
class Zombie: Monster {
 class var spookyNoise: String {
 return "Brains..."
 }

 var walksWithLimp = true
 ...
}

The definition of a computed property is very similar to a type method’s. The main differences are that
you use the var keyword, rather than func, and you do not use the parentheses.

One new element in the code above is that you use shorthand getter syntax. If you are not providing a
setter for a computed property, you can omit the get block of the computed property’s definition and
simply return the computed value as needed.

Switch to main.swift. Add a line at the bottom of the file to print the Zombie type’s spookyNoise
property to the console.

Listing 16.13 “Brains…” (main.swift)
...
print("Victim pool: \(fredTheZombie.victimPool)")
fredTheZombie.victimPool = 500
print("Victim pool: \(fredTheZombie.victimPool)")
print(Zombie.spookyNoise)

Run the program. Spooky.

From the Library of wu yuan

ptg16315837

Type Properties

179

To see that class type properties can be overridden by subclasses, add a spookyNoise computed type
property to Monster.

Listing 16.14 Generic Monster noise (Monster.swift)
class Monster {
 class var spookyNoise: String {
 return "Grrr"
 }
 var town: Town?
 var name = "Monster"
 ...
}

Switch back to Zombie.swift and you will notice that the compiler is now giving you an error. If
you click the red exclamation mark on the lefthand side of the editor area, the error will display (see
Figure 16.1).

Figure 16.1 Override error

Zombie is now overriding a computed type property from its superclass. Because you used the class
keyword for this type property, it is perfectly fine for subclasses to provide their own definition of
spookyNoise. You just need to add the keyword override to Zombie’s definition of spookyNoise.

Make this change and the compiler error disappears.

Listing 16.15 Override spookyNoise (Zombie.swift)
class Zombie {
 override class var spookyNoise: String {
 return "Brains..."
 }
 var walksWithLimp = true
 ...
}

Build and run your program, and everything should work as it did before.

We mentioned above that classes can have static properties at the type level. These properties work a
bit differently than class properties on a type.

A defining characteristic of all monsters is that they are terrifying. Add a static property to the Monster
class to represent this fact.

Listing 16.16 All Monsters are terrifying (Monster.swift)
class Monster {
 static let isTerrifying = true
 class var spookyNoise: String {
 return "Grrr"
 }
 ...
}

From the Library of wu yuan

ptg16315837

Chapter 16 Properties

180

You add a new static property on Monster to represent the fact that all monsters are terrifying by
definition. Because you added this property to Zombie’s superclass Monster, it is also available on
Zombie. Add the following to main.swift to see this in action.

Listing 16.17 Run away from Zombie (main.swift)
...
print(Zombie.spookyNoise)
if Zombie.isTerrifying {
 print("Run away!")
}

As you can see, you access the isTerrifying property on the Zombie via dot syntax. If the Zombie is
terrifying, you run away.

Build and run your program. The console warns you to Run away!

One of the major differences between static and class type properties is that static properties cannot be
overridden by a subclass. Making this type property a static constant is very definitive: monsters are
terrifying, and subclasses cannot change that.

Access Control
You do not always want elements of your program’s code to be visible to all other elements. In fact,
you will frequently want to have much more granular control over your code’s access. You can grant
components of your code specific levels of access to other components of your code. This is called
access control.

For example, you might want to hide or expose a method on a class. Suppose you have a property that
is used only within a class’s definition. It could be problematic if another, external type modified that
property by mistake. With access control, you can manage the visibility of that property to hide it from
other parts of the program. Doing so will encapsulate the property’s data and prevent external code
from meddling with it.

Access control is organized around two important and related concepts: modules and source files. In
terms of your project’s files and organization, these are the central building blocks of your application.

A module is a unit of code that is distributed together. You may recall seeing import UIKit or import
Cocoa at the top of your playgrounds. These are frameworks, which bundle together a number of
related types that perform a series of related tasks. For example, UIKit is a framework designed to
facilitate the development of user interfaces. Modules are brought into another module using Swift’s
import keyword, as suggested by the above examples.

Source files, on the other hand, are more discrete units. They represent a single file and live within
a specific module. It is good practice to define a single type within a source file. This is not a
requirement, but doing so helps keep your project organized.

From the Library of wu yuan

ptg16315837

Access Control

181

Swift provides a choice of three levels of access (Table 16.1).

Table 16.1 Swift access control

Access Level Description

Public Public access makes entities visible to all files in the module or those that
import the module.

Internal Internal access (the default) makes entities visible to all files in the same
module.

Private Private access makes entities visible only within their defining source file.

public access is the least restrictive and private access is the most restrictive level of access control.
In general, a type’s access level needs to be consistent with the access levels of its properties and
methods. A property cannot have a less restrictive level of access control than its type. For example, a
property with an access control level of internal cannot be declared on a type with private access.
Likewise, the access control of a function cannot be less restrictive than the access control listed for its
parameters. If you violate these requirements, then the compiler will issue an error to help you correct
the mistake.

Swift specifies internal as the default level of access control for your app. Having a default level
of access means that you do not need to specifically declare access controls for every type, property,
and method in your code. You only need to declare a level of access control when you need to specify
public or private access.

Let’s see the private level of access in action. Create an isFallingApart Boolean property defined
on the Zombie type. Give it a default value of false. This property will keep track of an instance’s
physical integrity (zombies, after all, sometimes lose bits). This property really does not need to
be exposed to the rest of the program because it is an implementation detail of the Zombie class.
Therefore, set it to private.

Listing 16.18 Falling apart is a private matter (Zombie.swift)
class Zombie: Monster {
 override class var spookyNoise: String {
 return "Brains..."
 }

 var walksWithLimp = true
 private var isFallingApart = false

 final override func terrorizeTown() {
 if !isFallingApart {
 town?.changePopulation(-10)
 }
 super.terrorizeTown()
 }

 func changeName(name: String, walksWithLimp: Bool) {
 self.name = name
 self.walksWithLimp = walksWithLimp
 }
}

From the Library of wu yuan

ptg16315837

Chapter 16 Properties

182

After you create the property, you make use of it in the terrorizeTown() function. You check to see
whether isFallingApart is false. If it is false, then the instance is free to terrorize its town. If the
instance is falling apart, then it will not be able to terrorize its town.

Controlling getter and setter visibility
If a property has both a getter and a setter, you can control the visibility of the two independently. But
by default, the getter and setter have the same visibility. Here, isFallingApart has a private getter and
a private setter.

However, you probably want other files in your project to be able to tell whether a Zombie is falling
apart. You just do not want them to change its falling-apart-ness. Change the isFallingApart property
to have an internal getter and a private setter.

Listing 16.19 Making the getter internal and the setter private (Zombie.swift)
class Zombie: Monster {
 ...
 private internal private(set) var isFallingApart = false
 ...
}

You use the syntax internal private(set) to specify that the getter should be internal and the setter
should be private. You could use public, internal, or private for either, with one restriction: the setter
cannot be more visible than the getter. That means, for example, that if you make the getter internal,
you cannot use public(set), because public is more visible than internal. Furthermore, the Zombie
class is defaulting to internal because you do not specify any level of access yourself. That means
marking isFallingApart’s getter or setter with public will prompt the compiler to remind you with a
warning that its defining class has internal visibility.

You can clean this code up a little. If you leave off a modifier for the getter, the access control defaults
to internal, which is what you want here. Refactor Zombie to use the default visibility for the getter
(internal) and private visibility for the setter.

Listing 16.20 Using default getter visibility (Zombie.swift)
class Zombie: Monster {
 ...
 internal private(set) var isFallingApart = false
 ...
}

Using the default does not change anything except the amount of typing you have to do. The getter
for isFallingApart is still visible to the other files in your project, and the setter is now visible only
within Zombie.swift.

From the Library of wu yuan

ptg16315837

Bronze Challenge

183

This chapter introduced a lot of material. Take some time to let all of the ideas sink in. You learned
about:

• property syntax

• stored vs. computed properties

• read-only and read/write properties

• lazy loading and lazy properties

• property observers

• type properties

• access control

Properties are a central concept in Swift programming. It is a good idea to get comfortable with all of
these ideas. The challenges below will help you master the important concepts.

Bronze Challenge
Your town’s mayor is busy. Every birth and relocation does not require the mayor’s attention. After all,
the town is in crisis! Only log changes to the town’s population if the new population is less than the
old value.

Silver Challenge
Make a new type called Mayor. It should be a struct. The Town type should have a property called mayor
that holds an instance of the Mayor type.

Have your town inform the mayor every time the property for population changes. If the town’s
population decreases, have the instance of the Mayor log this statement to the console: "I'm deeply
saddened to hear about this latest tragedy. I promise that my office is looking into
the nature of this rash of violence." If the population increases, then the mayor should do
nothing.

(Hint: You should define a new instance method on the Mayor type to complete this challenge.)

Gold Challenge
Mayors are people too. An instance of the Mayor type will naturally get nervous whenever its town
loses some population due to a Zombie attack. Create a stored instance property on the Mayor type
called anxietyLevel. It should be of type Int, and should start out with a default value of 0.

Increment the anxietyLevel property every time a Mayor instance is notified of a Zombie attack. Last,
as a mayor will not want to outwardly display anxiety, mark this property as private. Verify that this
property is not accessible in main.swift.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

185

17
Initialization

Initialization is the operation of setting up an instance of a type. It entails giving each stored property
an initial value and may involve other preparatory work. After this process, the instance is prepared and
available to use.

The types that you have been creating up to this point have all been created in more or less the same
way. The values for the properties were either given default stored values or were computed on
demand. Initialization was not customized, and it was not particularly considered.

It is very common to want control over how an instance of a type is created. For example, it would be
ideal for the instance to have all of the correct values in its properties immediately. Previously, you
have given default values to an instance’s stored properties and changed these properties’ values after
you created the instance. This strategy is inelegant. Initializers help you create an instance with the
appropriate values.

Initializer Syntax
Structures and classes are required to have initial values for their stored properties by the time
initialization completes. This requirement explains why you have been giving all of your stored
properties default values. If you had not given these stored properties default values, the compiler
would have given you errors saying that the type’s properties were not ready to use. Defining an
initializer on the type is another way to ensure that properties have values when the instance is created.

The syntax for writing an initializer is a little different from what you have already seen. Initializers are
written with the init keyword. Even though they are methods on a type, initializers are not preceded
with the func keyword. Initializer syntax looks like this:

struct CustomType {
 init(someValue: SomeType) {
 // Initialization code here...
 }
}

This general syntax does not differ among structures, enumerations, and classes. In the example above,
the initializer has one parameter called someValue of type SomeType. While initializers typically have
one or more parameters, they can also have zero parameters (in which case there is a set of empty
parentheses after the init keyword).

The initializer’s implementation is defined within the braces, just as you have been doing with regular
functions and methods throughout this book. But unlike other methods, initializers do not return
values. Instead, initializers are tasked with giving values to a type’s stored properties.

From the Library of wu yuan

ptg16315837

Chapter 17 Initialization

186

Struct Initialization
Structures can have both default and custom initializers. When working with structs, you will typically
want to take advantage of the default initializer provided, but there are some circumstances in which
you will want to customize the initialization process.

Default initializers for structs
Remember how you have been getting instances of your Town type? You gave the type’s stored
properties default values. What you did not know is that you were taking advantage of an empty
initializer (an initializer without parameters) provided to you by the Swift compiler automatically.
When you entered code like var myTown = Town(), that syntax called the empty initializer and set the
new instance’s properties to the default values you specified.

Another form of default initializer is the memberwise initializer. A memberwise initializer has a
parameter for each stored property on the type. In this case, you do not ask the compiler to fill in the
values of the new instance’s properties based on default values you specified elsewhere. Instead, the
free memberwise initializer includes arguments for all of the stored properties that need values. (We
call it “free” because it is provided by the Swift compiler automatically – you do not need to define it.)

Remember, one of the principal goals of initialization is to give all of the type’s stored properties
values so that the new instance is ready to use. The compiler will enforce the requirement that your
new instance has values in its stored properties. If you do not provide an initializer for your custom
struct, you must provide the necessary values through default values or memberwise initialization.

Make a copy of the MonsterTown project, as you did in the previous chapter. Open the copy and
navigate to main.swift.

In main.swift, replace your use of the empty initializer on the Town type with a call to the free
memberwise initializer. Add a call to printTownDescription(), too, but do not run the program to see
what is logged to the console just yet.

Listing 17.1 Using a memberwise initializer (main.swift)
...
var myTown = Town()(population: 10000, numberOfStoplights: 6)
myTown.printTownDescription()
...

Next, visit the Town.swift file. Notice that its properties for population and numberOfStoplights
have default values. These default values differ from the arguments you have provided to Town’s
memberwise initializer.

Now run your program. Is the output what you expected? myTown’s description reads Population:
10000; number of stoplights: 6 in the console. Those are not the default values you gave to the
Town type’s stored properties. How did these properties’ values change from the default values?

The instance myTown is now created with the free memberwise initializer. The Town type’s stored
properties are listed in the initializer, which allows you to specify new values for the instance’s
properties. As the console reveals, the values you gave to the initializer replace the default values.

Notice that the Town’s property names are used as external parameter names in the call to this
initializer. Swift provides default external parameter names to every initializer automatically, one for

From the Library of wu yuan

ptg16315837

Custom initializers for structs

187

each parameter given by the initializer. This convention is important because Swift’s initializers all
have the same name: init. Therefore, the function name cannot be used to identify which specific
initializer should be called. The parameter names, and their types, help the compiler to differentiate
between initializers so that it knows which initializer to call.

Default memberwise initializers on structs are helpful because Swift provides them to you
automatically. You get them for free. This benefit of structs makes them particularly attractive.
Nonetheless, it is common that you will want to customize the initialization of your type. That is where
custom initializers come in.

Custom initializers for structs
It is time to write your own initializer for the Town type. Custom initializers are powerful, and with
great power comes great responsibility. When you write your own initializer, Swift will not give you
any free initializers (say good-bye to the default memberwise initializer!). You are responsible for
ensuring that instances’ properties are all given their appropriate values.

First you need to do some housecleaning. You are going to remove all of default values for the
properties. These were helpful before you knew about initializers, as they ensured that the properties
for instances of your type had values when an instance was created. Now, however, they do not really
add much value to the Town struct. Additionally, you will change region back to an instance property –
the monster infestation is starting to spread outside the South. Last, you will add the town’s region to
the description that is logged by printTownDescription because a town’s region can now vary from
instance to instance.

Open the Town.swift file and make these changes.

Listing 17.2 Cleaning house (Town.swift)
struct Town {
 static let region = "South"

 var population: Int = 5422 {
 didSet(oldPopulation) {
 print("The population has changed to \(population)
 from \(oldPopulation).")
 }
 }
 var numberOfStoplights = 4

 enum Size {
 case Small
 case Medium
 case Large
 }

 func printTownDescription() {
 print("Population: \(population); number of stop lights:
 \(numberOfStoplights); region: \(region)")
 }
...

After deleting the default values for these types, you may have noticed that the compiler issued an
error in two places, both indicating Type annotation missing in pattern. Previously, you took

From the Library of wu yuan

ptg16315837

Chapter 17 Initialization

188

advantage of type inference for these properties, which worked well with the default values you gave
them. Without the default values, the compiler does not know what type information to give to the
properties. You need to explicitly declare their types.

Listing 17.3 Declaring types (Town.swift)
struct Town {
 let region: String
 var population: Int {
 didSet(oldPopulation) {
 print("The population has changed to \(population)
 from \(oldPopulation).")
 }
 }
 var numberOfStoplights: Int

 enum Size {
 case Small
 case Medium
 case Large
 }
...

Now it is time to create your custom initializer. Later, you will call this initializer from another
initializer defined within this same type. For now, add the following initializer to your Town type.

Listing 17.4 Adding a memberwise initializer (Town.swift)
...
var numberOfStoplights: Int
init(region: String, population: Int, stoplights: Int) {
 self.region = region
 self.population = population
 numberOfStoplights = stoplights
}
enum Size {
 case Small
 case Medium
 case Large
}
...

The init(region:population:stoplights:) method here takes three arguments, one for each of
the stored properties on the Town type. You take the values given to the arguments of the initializer
and pass them to the actual properties of the type. For example, the value passed to the region
argument of the initializer is set as the value for the region property. Because the parameter name in
the initializer is the same as the property name, you need to explicitly access the property via self.
The numberOfStoplights property does not have this problem, so you simply set the value of the
initializer’s argument for stoplights to the numberOfStoplights property.

Notice that you set the value for the region property even though it was declared as a constant.
The Swift compiler allows you to initialize a constant property at one point during initialization.
Remember, the goal of initialization is to ensure that a type’s properties have values after initialization
completes.

From the Library of wu yuan

ptg16315837

Custom initializers for structs

189

At this point, you may be noticing that there is an icon in Xcode’s toolbar informing you that there is
an error (see Figure 17.1).

Figure 17.1 Toolbar error

Click the red icon and Xcode will open the issue navigator in the project navigator’s pane on the left.
You will see that the error is located in main.swift and relates to the initializer that the compiler was
giving you by default (see Figure 17.2).

Figure 17.2 Error in issue navigator

Switch to main.swift to fix the error there.

The memberwise initializer that the compiler previously gave you used the actual property name for
numberOfStoplights for the argument name in the initializer. In Town’s initializer, you shortened this
parameter name to be stoplights. Change the parameter name in main.swift. While you are there,
add the region parameter.

Listing 17.5 Making sure the parameters align (main.swift)
var myTown = Town(region: "West", population: 10000, numberOfStoplights stoplights: 6)

Build and run the program. The error should disappear, and you should see the same console log
output.

Initializer delegation
You can define initializers to call other initializers on the same type. This procedure is called initializer
delegation. It is typically used to provide multiple paths for creating an instance of a type.

In value types (i.e., enumerations and structures), initializer delegation is relatively straightforward.
Because value types do not support inheritance, initializer delegation only involves calling another
initializer defined on the type. It is somewhat more complicated for classes, as you will soon see.

From the Library of wu yuan

ptg16315837

Chapter 17 Initialization

190

Switch to Town.swift to write a new initializer on this type that makes use of initializer delegation.

Listing 17.6 Using initializer delegation (Town.swift)
...
init(region: String, population: Int, stoplights: Int) {
 self.region = region
 self.population = population
 numberOfStoplights = stoplights
}
init(population: Int, stoplights: Int) {
 self.init(region: "N/A", population: population, stoplights: stoplights)
}
enum Size {
 case Small
 case Medium
 case Large
}
...

Here, you define a new initializer on the Town type. This initializer, however, is different from the
previous one that you created. It only takes two arguments: population and stoplights.

What about the region property? How is that getting set?

Look at this new initializer’s implementation. You call Town’s other initializer on self:
self.init(region: "N/A", population: population, stoplights: stoplights). Notice that you
pass in the supplied arguments for population and stoplights. Because you do not have an argument
for region, you have to supply your own value. In this case, you specify the string "N/A" to signify that
there was no region information given to the initializer.

Initializer delegation helps to avoid duplication of code. Instead of retyping the same code to assign
the values passed in to the initializer’s arguments to the type’s properties, you can simply call across to
another initializer on the type. Avoiding duplication of code does more than save you from typing the
same thing twice. It can also help avoid bugs. When you have the same code in two places, you have to
remember to change both places any time you make a change.

This is why we say that initializer delegation “defines a path” by which a type creates an instance. One
initializer calls across to another on a given type to provide specific pieces that are needed to create
an instance. Eventually, initializer delegation ends up inside an initializer that has all it needs to fully
prepare an instance for use.

Because you defined your own memberwise initializer, the compiler will give you no free initializers.
This is not all that limiting; it can even be a benefit. For example, you might want to use this new
initializer if there is no region information available for a given town that you would like to create. In
that case, you would use your handy new initializer with arguments for population and stoplights to
set the corresponding properties while also giving region a placeholder value.

From the Library of wu yuan

ptg16315837

Class Initialization

191

Make use of this new initializer in main.swift.

Listing 17.7 Using the new initializer (main.swift)
...
var myTown = Town(region: "West", population: 10000, stoplights: 6)
myTown.printTownDescription()
...

If you build and run your application, the result is the same, but with one key difference. You are no
longer setting the instance’s region to anything specific, and will see that N/A is logged to the console
for region’s value.

Class Initialization
The general syntax for initialization in classes looks very similar to initialization in value types.
Nonetheless, there are some different rules for classes that must be observed. These additional rules
are mainly due to the fact that classes can inherit from other classes, which necessarily adds some
complexity to initialization.

In particular, classes add the concepts of designated and convenience initializers. An initializer on a
class is either one or the other. Designated initializers are responsible for making sure that an instance’s
properties all have values before initialization completes, thus making the instance ready to use.
Convenience initializers are auxiliary to designated initializers. They supplement designated initializers
by calling across a class to its designated initializer. The role of convenience initializers is typically to
create an instance of a class for a very specific use case.

Default initializers for classes
You have already seen examples of using a class’s default initializer. Classes get a default, empty
initializer if you provide default values to all properties and do not write your own initializer. Classes
do not get a free memberwise initializer like structs. This explains why you gave your classes default
values before: it allowed you to take advantage of the free empty initializer. Thus, you were able to get
an instance of the Zombie class like so: let fredTheZombie = Zombie(), with the empty parentheses
indicating that you were using the default initializer.

From the Library of wu yuan

ptg16315837

Chapter 17 Initialization

192

Initialization and class inheritance
Open Monster.swift and modify the class to give it an initializer. Also, remove the default value of
"Monster" from the name property.

Listing 17.8 Initializing Monster (Monster.swift)
class Monster {
 ...
 var town: Town?
 var name = "Monster"
 var name: String

 var victimPool: Int {
 get {
 return town?.population ?? 0
 }
 set(newVictimPool) {
 town?.population = newVictimPool
 }
 }
 init(town: Town?, monsterName: String) {
 self.town = town
 name = monsterName
 }
 func terrorizeTown() {
 if town != nil {
 print("\(name) is terrorizing a town!")
 } else {
 print("\(name) hasn't found a town to terrorize yet...")
 }
 }
}

This initializer has two arguments: one for an optional instance of the Town type, and another for the
name of the monster. The values for these arguments are assigned to the class’s properties within the
initializer’s implementation. Once again, note that the argument for the town in the initializer matches
the property name on the class, so you have to set the property’s value by accessing it through self.
But you do not have to access name through self because the initializer’s parameter has a different
name.

Now that you have added this initializer, you may notice that the toolbar is indicating that there are two
compiler errors. Click on the red icon and you will find that they are in main.swift. Switch to this file
to examine the errors.

You should see that your previous use of Zombie() to get an instance of this class is no longer
satisfying the compiler. Why not? The error states: Missing argument for parameter 'town' in
call.

The error signifies that the compiler is expecting Zombie’s initializer to include a parameter for town.
This expectation may seem strange because you did not provide an initializer to the Zombie class that
required town. In fact, you have provided no initializer to this class whatsoever. Instead you have been
relying on the empty initializer the compiler gives you for free when your properties have default
values.

That is the source of the error: Zombie no longer gets the free empty initializer that you were making
use of earlier. Why not? Automatic initializer inheritance.

From the Library of wu yuan

ptg16315837

Initialization and class inheritance

193

Automatic initializer inheritance
Classes do not typically inherit their superclass’s initializers. This feature of Swift is intended to
prevent subclasses from inadvertently providing initializers that do not set values on all the properties
of the subclass type, because subclasses frequently add additional properties that do not exist in the
superclass. Requiring subclasses to have their own initializers helps prevent types from being partially
initialized with incomplete initializers.

Nonetheless, there are circumstances in which a class does automatically inherit its superclass’s
initializers. If your subclass provides default values for all new properties it adds, then there are two
scenarios in which it will inherit its superclass’s initializers.

• If the subclass does not define any designated initializers, it will inherit its superclass’s designated
initializers.

• If the subclass implements all of its superclass’s designated initializers – either explicitly or via
inheritance, it will inherit all of its superclass’s convenience initializers.

Your Zombie type falls within the first of these two scenarios. It is inheriting the Monster type’s sole
designated initializer because it provides default values for all new properties it adds and it does not
define its own designated initializer. The signature for this initializer is: init(town:monsterName:).
And, because the Zombie type is inheriting an initializer, the compiler is no longer providing the free
initializer you were using before.

Thus, from the compiler’s point of view, the Zombie class does not have an empty initializer available
to use. And, QED, the Zombie class’s initializer lacks a parameter for town.

You need to update fredTheZombie’s initialization to remove the error. Update his parameters to
remove the compiler errors.

Listing 17.9 Updating fredTheZombie’s initialization (main.swift)
...
let fredTheZombie = Zombie()Zombie(town: myTown, monsterName: "Fred")
fredTheZombie.town = myTown
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printTownDescription()
fredTheZombie.changeName("Fred the Zombie", walksWithLimp: false)
...

Now, when you create an instance of the Monster or Zombie type, you give the instance a value for its
town and name properties. Build and run the application. The errors should be gone, and the results are
the same.

From the Library of wu yuan

ptg16315837

Chapter 17 Initialization

194

Designated initializers for classes
Classes use designated initializers as their primary initializers. As part of this role, designated
initializers are responsible for ensuring that the class’s properties are all given values before
initialization is ended. If a class has a superclass, then its designated initializer must also call its
superclass’s designated initializer.

You have already written a designated initializer for the Monster class. Recall:

init(town: Town?, monsterName: String) {
 self.town = town
 name = monsterName
}

Designated initializers are unadorned, meaning that designated initializers are denoted by no special
keywords placed before init. This syntax distinguishes designated initializers from convenience
initializers, which use the keyword convenience.

The Monster class’s initializer ensures that all of its properties are given values before initialization
completes. Currently, the Zombie type gives default values to all of its properties (except for the ones
inherited from Monster). Thus, the initializer you defined for Monster works fine for the Zombie.
Nonetheless, it would be better if Zombie defined its own initializer so that you can customize its
initialization.

Start by removing the default values for Zombie’s properties.

Listing 17.10 Removing default values (Zombie.swift)
class Zombie: Monster {
 override class var spookyNoise: String {
 return "Brains..."
 }

 var walksWithLimp = false
 var walksWithLimp: Bool
 private(set) var isFallingApart = false
 private(set) var isFallingApart: Bool

 final override func terrorizeTown() {
 if !isFallingApart {
 town?.changePopulation(-10)
 }
 super.terrorizeTown()
 }
 ...
}

Removing these default values triggers a compiler error: Class 'Zombie' has no initializers.
With no default values assigned, the Zombie class needs an initializer to give its properties values
before initialization completes.

From the Library of wu yuan

ptg16315837

Initialization and class inheritance

195

Add a new initializer to the Zombie class to solve this problem.

Listing 17.11 Adding a zombie initializer (Zombie.swift)

class Zombie: Monster {
 override class var spookyNoise: String {
 return "Brains..."
 }

 var walksWithLimp: Bool
 private(set) var isFallingApart: Bool
 init(limp: Bool, fallingApart: Bool, town: Town?, monsterName: String) {
 walksWithLimp = limp
 isFallingApart = fallingApart
 super.init(town: town, monsterName: monsterName)
 }
 final override func terrorizeTown() {
 if !isFallingApart {
 town?.changePopulation(-10)
 }
 super.terrorizeTown()
 }
}

Your new initializer takes care of the error because you are now ensuring that the Zombie’s properties
have values by the end of initialization. There are two parts to what you have added here. First, the
new initializer sets the values of the walksWithLimp and isFallingApart properties via the limp
and fallingApart arguments. These properties are specific to the Zombie class, so the designated
initializer initializes them with appropriate values.

Second, you call the designated initializer of Zombie’s superclass. As you saw in Chapter 15,
super points to a subclass’s superclass. Thus, the syntax super.init(town: town, monsterName:
monsterName) passes the values of the parameters town and monsterName from the initializer on
the Zombie class to the designated initializer on the Monster class. Doing so calls this initializer on
Monster, which will ensure that the Zombie’s properties for town and name will be set. Figure 17.3
shows this relationship graphically.

From the Library of wu yuan

ptg16315837

Chapter 17 Initialization

196

Figure 17.3 Calling super.init

You might be wondering why you called the superclass’s initializer last. Because Zombie’s initializer
is the designated initializer on the Zombie class, it is responsible for initializing all of the properties
it introduced. After these properties have been given values, the designated initializer of a subclass is
responsible for calling its superclass’s initializer so that it can initialize its properties.

There is still one more error to fix. The Zombie class is not getting initialized correctly in main.swift.
Switch to this file, and you will see that there is an error from the compiler telling you that the
initializer for Zombie is missing an argument. Fix this by updating fredTheZombie’s initializer to
include all the arguments from Zombie.

Listing 17.12 Does Fred walk with a limp? Is he falling apart? (main.swift)
...
let fredTheZombie = Zombie(town: myTown, monsterName: "Fred")
let fredTheZombie = Zombie(
 limp: false, fallingApart: false, town: myTown, monsterName: "Fred")
...

fredTheZombie is now getting initialized with all of the information that it needs in order to be ready
for use.

From the Library of wu yuan

ptg16315837

Initialization and class inheritance

197

Convenience initializers for classes
Unlike designated initializers, convenience initializers are not responsible for making sure all of a
class’s properties have a value. Instead, they do the work that they are defined to do and then hand off
that information to either another convenience initializer or a designated initializer. All convenience
initializers call across to another initializer on the same class. Eventually, a convenience initializer must
call through to its class’s designated initializer. The relationship between convenience and designated
initializers on a given class defines a path by which a class’s stored properties receive initial values.

Make a convenience initializer on the Zombie type. This initializer will provide arguments for whether
the Zombie instance walks with a limp and whether the instance is falling apart. It will omit parameters
for town and monsterName, meaning that callers of this initializer will only need to be responsible for
providing arguments to this initializer’s parameters.

Listing 17.13 Using a convenience initializer (Zombie.swift)
...
init(limp: Bool, fallingApart: Bool, town: Town?, monsterName: String) {
 walksWithLimp = limp
 isFallingApart = fallingApart
 super.init(town: town, monsterName: monsterName)
}
convenience init(limp: Bool, fallingApart: Bool) {
 self.init(limp: limp, fallingApart: fallingApart, town: nil, monsterName: "Fred")
 if walksWithLimp {
 print("This zombie has a bad knee.")
 }
}
final override func terrorizeTown() {
 if !isFallingApart {
 town?.changePopulation(-10)
 }
}
...

You mark an initializer as a convenience initializer with the convenience keyword. This keyword
tells the compiler that the initializer will need to delegate to another initializer on the class, eventually
calling to a designated initializer. After this call, an instance of the class is ready for use.

Here, the convenience initializer calls the designated initializer on the Zombie class. It passes in the
values for the parameters it received: limp and fallingApart. For the parameters that the convenience
initializer did not receive values for, town and monsterName, you pass nil and "Fred" to Zombie’s
designated initializer.

Once the convenience initializer calls the designated initializer, the instance is fully prepared for use.
Thus, you can check the value of the walksWithLimp property on the instance. If you had tried to
do this check before calling across to the Zombie’s designated initializer, the compiler would have
issued an error: Use of 'self' in delegating initializer before self.init is called.
This error tells you that the delegating initializer is trying to use self, which is needed to access the
walksWithLimp property, before it is ready for use.

From the Library of wu yuan

ptg16315837

Chapter 17 Initialization

198

Figure 17.4 shows the relationships between the convenience and designated initializers.

Figure 17.4 Initializer delegation

You can now create instances of the Zombie type with this convenience initializer. Switch to
main.swift and use it to create an instance. Remember, however, that instances of Zombie created with
this convenience initializer will have nil for the town property and "Fred" for the name property.

Listing 17.14 Creating a convenient zombie (main.swift)
...
let fredTheZombie = Zombie(
 limp: false, fallingApart: false, town: myTown, monsterName: "Fred")
fredTheZombie.terrorizeTown()
fredTheZombie.town?.printTownDescription()
fredTheZombie.changeName("Fred the Zombie", walksWithLimp: false)

var convenientZombie = Zombie(limp: true, fallingApart: false)
...

Build and run your program, and you will see that convenientZombie has a bad knee.

From the Library of wu yuan

ptg16315837

Required initializers for classes

199

Required initializers for classes
A class can require its subclasses to provide a specific initializer. For example, suppose you want all
subclasses of the Monster class to provide values for the monster’s name and the town it is terrorizing
(or nil, if the monster has not yet found a town). To do so, you mark the initializer with the keyword
required to indicate that all subclasses of this type must provide the given initializer.

Switch to Monster.swift to make this change.

Listing 17.15 Making town and monsterName required (Monster.swift)
class Monster {
 ...

 var victimPool: Int {
 ...
 }
 required init(town: Town?, monsterName: String) {
 self.town = town
 name = monsterName
 }

 func terrorizeTown() {
 ...
 }
}

The sole designated initializer on the Monster class is now required. Subclasses must implement this
initializer.

Unfortunately, the change triggers a compiler error, as revealed by Xcode’s toolbar. Select
the red icon to display the Issue navigator to see what is wrong: 'required' initializer
'init(town:monsterName:)' must be provided by subclass of 'Monster'. The error is telling
you that you are not yet implementing this newly required initializer on the Zombie class. Navigate to
Zombie.swift to implement the initializer.

Listing 17.16 Adding the required initializer (Zombie.swift)
...
convenience init(limp: Bool, fallingApart: Bool) {
 self.init(limp: limp, fallingApart: fallingApart, town: nil, monsterName: "Fred")
 if walksWithLimp {
 print("This zombie has a bad knee.")
 }
}
required init(town: Town?, monsterName: String) {
 walksWithLimp = false
 isFallingApart = false
 super.init(town: town, monsterName: monsterName)
}
final override func terrorizeTown() {
 if !isFallingApart {
 town?.changePopulation(-10)
 }
 super.terrorizeTown()
}
...

From the Library of wu yuan

ptg16315837

Chapter 17 Initialization

200

To implement a superclass’s required initializer, you prefix the subclass’s implementation of the
initializer with the required keyword. Unlike other functions that you must override if you inherit
them from your superclass, you do not mark required initializers with the override keyword. It is
implied by marking the initializer with required.

Your implementation of this required initializer makes it a designated initializer for the Zombie class.
Why, you ask? Good question.

Recall that designated initializers are responsible for initializing the type’s properties and for
delegating up to the superclass’s initializer. This implementation does exactly those two things. You
can therefore use this initializer to instantiate the Zombie class.

At this point, you might be wondering, “How many designated initializers does Zombie have?” The
answer is two: init(limp:fallingApart:town:monsterName:) and init(town:monsterName:).
Having more than one designated initializer is completely fine, and is not uncommon.

Deinitialization
Deinitialization is part of the process of removing instances of a class from memory when they are no
longer needed. Conceptually, it is the opposite of initialization. Deinitialization is limited to reference
types. It is not available for use by value types because they are removed from memory when they are
removed from scope.

In Swift, a deinitializer is called immediately prior to when the instance is removed from memory. It
provides an opportunity to do any final maintenance before the instance is deallocated.

The details of memory management are covered in greater detail in Chapter 24, but it makes sense to
introduce the idea of deinitialization while we are discussing initialization.

A class may only have one deinitializer. Deinitializers are written with deinit and take no arguments.
Let’s see a deinitializer in action in the Zombie class.

Listing 17.17 One less zombie (Zombie.swift)
...
required init(town: Town?, monsterName: String) {
 walksWithLimp = false
 isFallingApart = false
 super.init(town: town, monsterName: monsterName)
}

...

func changeName(name: String, walksWithLimp: Bool) {
 ...
}

deinit {
 print("Zombie named \(name) is no longer with us.")
}
...

Your new deinitializer simply logs a farewell to the Zombie instance that is about to be deallocated
from memory. Notice that the deinitializer accesses the Zombie’s name. Deinitializers have full access
to a instance’s properties and methods.

From the Library of wu yuan

ptg16315837

Failable Initializers

201

Open main.swift to trigger the Zombie’s deinit method. You will set fredTheZombie to be nil at the
end of the file. Doing so will trigger the process of removing this instance from memory.

Only optional types can be or become nil in Swift. Therefore, you have to declare fredTheZombie
as an optional – Zombie? – before you can make it nil. This change also means that you have to use
optional chaining to unwrap the optional’s value. Finally, you also need to declare fredTheZombie with
var instead of let so that the instance can optionally change to become nil.

Listing 17.18 Fred, we hardly knew ye (main.swift)
...
let var fredTheZombie: Zombie? = Zombie(
 limp: false, fallingApart: false, town: myTown, monsterName: "Fred")
fredTheZombiefredTheZombie?.terrorizeTown()
fredTheZombiefredTheZombie?.town?.printTownDescription()
fredTheZombiefredTheZombie?.changeName("Fred the Zombie", walksWithLimp: false)

var convenientZombie = Zombie(limp: false, fallingApart: false)

print("Victim pool: \(fredTheZombiefredTheZombie?.victimPool)")
fredTheZombiefredTheZombie?.victimPool = 500
print("Victim pool: \(fredTheZombiefredTheZombie?.victimPool)")

print(Zombie.spookyNoise)
if Zombie.isTerrifying {
 print("Run away!")
}
fredTheZombie = nil

Build and run the program now. You will see that you bid fredTheZombie farewell when the instance is
deallocated.

Failable Initializers
Sometimes it is useful to define a type whose initialization can fail. In these cases, you need a way
to report to the caller that you were not able to initialize the instance. You use failable initializers to
handle these scenarios.

There are a number of reasons why you might want initialization to fail. A type’s initializer may be
given invalid parameters. For example, you might want to have an initializer fail if someone tries to
initialize an instance of Town with a negative population. Or perhaps a type’s initialization depends
on an external resource that is not available, as in let image = UIImage(named: "non-existing-
image"). This code would fail to create a UIImage instance because the image resource does not exist.
When this happens, UIImage’s failable initializer would return nil to indicate that initialization has
failed.

A failable Town initializer
Failable initializers return an optional instance of the type. You append a question mark after the
keyword init to indicate that an initializer is failable (i.e., init?). You can also use an exclamation
point after init to create a failable initializer that returns an implicitly unwrapped optional (i.e.,

From the Library of wu yuan

ptg16315837

Chapter 17 Initialization

202

init!). Returning an implicitly unwrapped optional would mean that you can avoid all of the optional
unwrapping syntax that Swift provides to make optionals safe to use. For this reason, while returning
an implicitly unwrapped optional is a bit easier to use, it is markedly less safe, and should be used with
caution.

Switch to Town.swift to give the Town struct a failable initializer. If an instance of Town is being
created with a population of 0, then initialization will fail. This result makes sense, because you cannot
have a town without a population.

Town has two initializers. Remember that you delegated from the init(population:stoplights:)
initializer to the init(region:population:stoplights:) initializer in this type. For now, just make
the init(region:population:stoplights:) failable.

Listing 17.19 Using a failable initializer (Town.swift)
struct Town {
...
 initinit?(region: String, population: Int, stoplights: Int) {
 if population <= 0 {
 return nil
 }
 self.region = region
 self.population = population
 numberOfStoplights = stoplights
 }
...
}

Notice that you now use the failable initializer syntax: init?(region:population:stoplights:).
After this declaration, you check to see whether the given value for population is less than or equal
to 0. If population is less than or equal to 0, then you return nil. The initializer fails in this case. In
the context of failable initializers, “fail” means that the initializer will create an optional instance of the
Town type with a value of nil. This is good. It is preferable to have an instance set to nil rather than an
instance with bad data in its properties.

Open main.swift to see your new failable initializer in action. Initialize an instance of Town with a
value of 0 for its population parameter.

Listing 17.20 myTown, population zero (main.swift)
var myTown = Town(region: "West", population: 100000, stoplights: 6)
myTown.printTownDescription()
...

At this point, you should notice a few errors in your program. Take a moment to consider what is going
on before you build and run the program.

The initializer init(population:stoplights:) currently delegates to a failable initializer.
This suggests that init(population:stoplights:) may get nil back from the designated
initializer. Receiving nil back from the designated initializer will be unexpected, because
init(population:stoplights:) is not failable itself.

From the Library of wu yuan

ptg16315837

A failable Town initializer

203

Fix this problem by also making init(population:stoplights:) a failable initializer.

Listing 17.21 Making both Town initializers failable (Town.swift)
struct Town {
...
 init?(region: String, population: Int, stoplights: Int) {
 if population <= 0 {
 return nil
 }
 self.region = region
 self.population = population
 numberOfStoplights = stoplights
 }

 initinit?(population: Int, stoplights: Int) {
 self.init(region: "N/A", population: population, stoplights: stoplights)
 }
...
}

Run the program. You will see that there are still a number of errors that you have to fix. You can find
these errors in the main.swift file.

The line of code myTown.printTownDescription() has an error that reads: Value of optional
type 'Town?' not unwrapped; did you mean to use '!' or '?'? Remember that changing the
initializers on the Town struct to be failable means that they now return optionals. The initializers now
return Town? and not Town. That means you have to unwrap the optionals before using them.

Use optional chaining to fix the errors in main.swift.

Listing 17.22 Using optional chaining (main.swift)
var myTown = Town(region: "West", population: 0, stoplights: 6)
myTownmyTown?.printTownDescription()

let ts = myTownmyTown?.townSize
print(tsts)

myTownmyTown?.changePopulation(1000000)
print("Size: \(myTownmyTown?.townSize);
 population: \(myTownmyTown?.population)")
...

As you can see, representing nil in Swift tends to have a fairly extensive impact on your code. These
changes can add complexity and more code to your project. Both increase the chances of making a
troublesome mistake.

We recommend that you minimize your use of optionals to those cases in which you absolutely need
them.

Build and run the program now. You removed the errors, so the project runs fine. It is time to say
farewell to MonsterTown. You will be moving on to a new project – free of zombies – in the next
chapter.

From the Library of wu yuan

ptg16315837

Chapter 17 Initialization

204

Failable initializers in classes
Failable initializers work a bit differently in classes than in value types (like enumerations and
structures). In value types, a failable initializer can fail at any point, and you return nil at that time.
Failable initializers in classes have to assign initial values in all of the class’s properties before failing.

This requirement means that you cannot write the following code:

class MyClass {
 let myProperty: String
 init?(myProperty: String) {
 if myProperty.isEmpty {
 return nil
 }
 self.myProperty = myProperty
 }
}

Code like the above will trigger an error from the compiler telling you that all stored properties of
a class must be initialized before returning nil. myProperty does not receive an initial value before
the initializer fails. How can you avoid this error? One possibility is to use an implicitly unwrapped
optional:

class MyClass {
 let myProperty: String!
 init?(myProperty: String) {
 if myProperty.isEmpty {
 self.myProperty = nil
 return nil
 }
 self.myProperty = myProperty
 }
}

The code above makes myProperty an implicitly unwrapped optional. Since myProperty is declared as
a constant, it can only be assigned to once. That means myProperty does not default to nil. If it did,
then that would count as its only allowed assignment. You have to assign myProperty to nil before
returning from the initializer. Therefore, the initializer can fail before giving myProperty a non-nil
value.

Because myProperty is a constant, you will not be able to assign nil to it after initialization. For
example, assuming an instance of MyClass called mc, this code would trigger an error: mc?.myProperty
= nil. Thus, you can be sure that myProperty has a valid value if initialization succeeds. Moreover,
the implicitly unwrapped optional syntax means that you can access myProperty’s value without
having to use optional binding or chaining.

Nonetheless, the usual guidance about force-unwrapping optionals is still important to keep in mind. If
MyClass is initialized with a String instance that causes the initializer to fail (e.g., an empty String),
then force-unwrapping the resulting optional instance will cause a runtime crash. For example, this
hypothetical code is unsafe and should be avoided: mc!.myProperty.

From the Library of wu yuan

ptg16315837

Initialization Going Forward

205

Initialization Going Forward
“How am I going to remember all this?” We hear you. Initialization in Swift is a very defined process
with a lot of rules. Thankfully, the compiler will remind you of what you need to do in order to comply
and write a valid initializer. Rather than memorizing all of the rules to initialization, it is useful to think
of Swift initialization in terms of value types and classes.

For value types, such as structs, initialization is principally responsible for ensuring that all of the
instance’s stored properties have been initialized and given appropriate values. This statement is true
for classes as well, but initialization is a bit more complicated in this case.

Initialization for classes can be thought of as unfolding in two sequential phases.

In the first phase, a class’s designated initializer is eventually called (either directly or by delegation
from a convenience initializer). At this point, all of the properties declared on the class are initialized
with appropriate values inside of the designated initializer’s definition. Next, a designated initializer
delegates up to its superclass’s designated initializer. The designated initializer on the superclass then
ensures that all of its own stored properties are initialized with appropriate values, which is a process
that continues until the class at the top of the inheritance chain is reached. The first phase is now
completed.

The second phase begins, providing an opportunity for a class to further customize the values held
by its stored properties. For example, a designated initializer can modify properties on self after it
calls to the superclass’s designated initializer. Designated initializers can also call instance methods on
self. It is finally at this point that initialization reenters the convenience initializer, providing it with an
opportunity to perform any customization on the instance.

The instance is fully initialized after these two phases, and all of its properties and methods are
available for use.

The goal of this very definite initialization process is to guarantee the successful initialization of a
class. The compiler secures this procedure and will issue errors if you do not adhere to any step in
the process. In the end, it is not important that you remember each step in the process so long as you
follow the compiler’s guidance. Over time, the details of initialization will become more secure in your
mind.

Silver Challenge
Currently, the required initializer on the Monster class is implemented as a designated initializer on
the Zombie subclass. Make this initializer a convenience initializer on the Zombie class instead. This
change will involve delegating across the Zombie class to its designated initializer.

Gold Challenge
The Monster class can be initialized with any String instance for the monsterName parameter,
even an empty String. Doing so would lead to an instance of Monster with no name. Even though
Frankenstein’s monster had no name, you want all of yours to be individually identified. Fix this
problem in the Monster class by ensuring that monsterName cannot be empty.

Your solution will involve giving Monster a failable initializer. Also note that this change will have an
impact on initialization in the Zombie subclass. Make the necessary adjustments in this class as well.

From the Library of wu yuan

ptg16315837

Chapter 17 Initialization

206

For the More Curious: Initializer Parameters
Like functions and methods, initializers can provide explicit external parameter names. External
parameter names distinguish between the parameter names available to callers and the local
parameter names used in the initializer’s implementation. Because initializers follow different naming
conventions than functions (i.e., initializer names are always init), the parameters’ names and types
help to determine which initializer should be called. Thus, Swift provides external parameter names for
all of the initializer’s arguments by default.

You can provide your own external parameter names as needed. For example, imagine a
WeightRecordInLBS struct that should be able to be initialized with kilograms.

struct WeightRecordInLBS {
 let weight: Double

 init(weightInKilos kilos: Double) {
 weight = kilos * 2.20462
 }
}

This initializer supplies weightInKilos as an explicit external parameter, and gives
kilos as a local parameter. In its implementation, you simply convert kilos to pounds by
multiplying with the correct conversion. You would then use this initializer like so: let wr =
WeightRecordInLBS(weightInKilos: 84).

You can even use _ as an explicit external parameter name if you do not want to expose a parameter
name. For example, our fictitious WeightRecordInLBS struct obviously defines a weight record
in terms of pounds. Thus, it would make sense for the initializer to default to taking pounds in its
argument.

struct WeightRecordInLBS {
 let weight: Double

 init(_ pounds: Double) {
 weight = pounds
 }

 init(weightInKilos kilos: Double) {
 weight = kilos * 2.20462
 }
}

The new initializer above can be used in the following manner: let wr = WeightRecordInLBS(185).
Because this type rather explicitly represents a weight record in pounds, there is no need for a named
parameter in the argument list. Using _ can make your code more concise, which is convenient when it
is quite explicit what will be passed into the argument.

From the Library of wu yuan

ptg16315837

207

18
Value vs. Reference Types

This chapter builds on the lessons you have been learning about value types and references types. You
will explore the differences between the two by comparing and contrasting their differing behaviors in
a variety of scenarios. At the end of this chapter, you should have a good understanding of when to use
a value type (e.g., a struct) or a reference type (e.g., a class).

Value Semantics
Create a new playground called ValueVsRef and save it in a good place. Your playground should have
the same code below:

import Cocoa

var str = "Hello, playground"

You have seen this code many times before: you have a mutable instance of type String set to the
value of "Hello, playground". Make a new string by giving the value of str to another instance.

Listing 18.1 Making a new string
import Cocoa

var str = "Hello, playground"
var playgroundGreeting = str

playgroundGreeting has the same value as str. They both hold the string "Hello, playground",
which you can verify in the results sidebar. But what happens when you change the value of
playgroundGreeting? Will it also change the value of str? Change playgroundGreeting to find out.

Listing 18.2 Updating playgroundGreeting
import Cocoa

var str = "Hello, playground"
var playgroundGreeting = str
playgroundGreeting += "! How are you today?"
str

As you can see, even though playgroundGreeting’s value has been updated, str’s value has not
changed. Why not? The answer has to do with value semantics.

From the Library of wu yuan

ptg16315837

Chapter 18 Value vs. Reference Types

208

To better understand the meaning of value semantics, hold down the Option key and click on
playgroundGreeting. You should see the window shown in Figure 18.1 pop up:

Figure 18.1 playgroundGreeting information

This window shows some useful information. For example, playgroundGreeting is of type String.
Click on the word “String” in this window and it will reveal the documentation for the String type
(see Figure 18.2).

Figure 18.2 String documentation

From the Library of wu yuan

ptg16315837

Reference Semantics

209

You will see at the top of this document that String is listed as a struct. This means that String is
implemented as a struct in Swift’s standard library. Furthermore, this means that String is a value
type.

“What are value types?” you may be asking. Value types are always copied when they are assigned
to an instance or passed as an argument to a function. This should remind you of what you just saw
above.

When you assigned str to playgroundGreeting, you gave a copy of str’s value to
playgroundGreeting. They do not point to the same underlying instance. Thus, when you changed
playgroundGreeting’s value, it had no impact on str’s value. They are distinct from each other.
Figure 18.3 shows this relationship graphically.

Figure 18.3 Value semantics and copy behavior

Swift’s basic types – Array, Dictionary, Int, String, and so on – are all implemented as structs, as
value types. This design choice made at the level of the standard library should indicate to you how
important value types are to Swift. You should always consider modeling your data with a struct first,
and then move on to using a class if needed.

Let’s look at how reference semantics work to get a better understanding of when it is appropriate to
make use of them.

Reference Semantics
Reference semantics work differently than value semantics. With value types, you get a copy of the
instance when you assign it to a new constant or variable. The same is true when you pass an instance
of a value type as the argument to a function. An instance of a reference type, however, behaves
differently in that these two actions actually create an additional reference to the same underlying
instance.

From the Library of wu yuan

ptg16315837

Chapter 18 Value vs. Reference Types

210

Let’s add a new class to model a Greek god to the playground to see just what this means.

Listing 18.3 Adding a Greek god class
import Cocoa

var str = "Hello, playground"
var playgroundGreeting = str
playgroundGreeting += "! How are you today?"
str

class GreekGod {
 var name: String
 init(name: String) {
 self.name = name
 }
}

The class GreekGod is small – it supplies a single stored property to hold on to a god or goddess’s
name. Make a new instance of this class.

Listing 18.4 Making a Greek god
...

class GreekGod {
 var name: String
 init(name: String) {
 self.name = name
 }
}

let hecate = GreekGod(name: "Hecate")

You now have a new instance of GreekGod with the name “Hecate,” goddess of the crossroads. Make a
new constant called anotherHecate and assign hecate to it.

Listing 18.5 Getting a reference to a Greek god
...

class GreekGod {
 var name: String
 init(name: String) {
 self.name = name
 }
}
let hecate = GreekGod(name: "Hecate")
let anotherHecate = hecate

At this point, you have two constants – but they both point to the same instance of the GreekGod class.
Change anotherHecate’s name to illustrate this point.

From the Library of wu yuan

ptg16315837

Reference Semantics

211

Listing 18.6 Changing a Greek god’s name
...

class GreekGod {
 var name: String
 init(name: String) {
 self.name = name
 }
}
let hecate = GreekGod(name: "Hecate")
let anotherHecate = hecate

anotherHecate.name = "AnotherHecate"
anotherHecate.name
hecate.name

The code in Listing 18.6 changes the name of only anotherHecate and leaves hecate’s name alone.
But the name property for both of the gods has changed to “AnotherHecate” in the results sidebar. What
happened?

The code GreekGod(name: "Hecate") created an instance of the GreekGod class. When you assign
an instance of a class to a constant or variable, as you did with hecate, that constant or variable gets a
reference to the instance. And as you can see, a reference works differently than a copy.

With a reference, the constant or variable refers to an instance of some class in memory. Therefore,
both hecate and anotherHecate refer to the same instance of the GreekGod class. Figure 18.4 shows
this relationship.

Figure 18.4 Reference semantics

Because hecate and anotherHecate refer to the same instance of GreekGod, a change in one will be
reflected in the other.

From the Library of wu yuan

ptg16315837

Chapter 18 Value vs. Reference Types

212

Constant Value and Reference Types
Value and reference types behave differently when they are constants. Create a new struct called
Pantheon so that you have a value type of your own to work with.

Listing 18.7 Making the Greek Pantheon
...

class GreekGod {
 var name: String
 init(name: String) {
 self.name = name
 }
}
let hecate = GreekGod(name: "Hecate")
let anotherHecate = hecate

anotherHecate.name = "AnotherHecate"
anotherHecate.name
hecate.name

struct Pantheon {
 var chiefGod: GreekGod
}

The new struct above represents the Greek pantheon. It has one stored property to reflect the foremost
god in the pantheon. Greek gods are always squabbling, so you made this property mutable with var.

Make a new instance of Pantheon with hecate as the chiefGod.

Listing 18.8 Hecate’s Pantheon
...

class GreekGod {
 var name: String
 init(name: String) {
 self.name = name
 }
}
let hecate = GreekGod(name: "Hecate")
let anotherHecate = hecate

anotherHecate.name = "AnotherHecate"
anotherHecate.name
hecate.name

struct Pantheon {
 var chiefGod: GreekGod
}

let pantheon = Pantheon(chiefGod: hecate)

From the Library of wu yuan

ptg16315837

Constant Value and Reference Types

213

You now have an instance of Pantheon with hecate at its head. Note that this instance is created with
let, so it is a constant. Try to change pantheon’s chiefGod property.

Listing 18.9 A new chief god
...
struct Pantheon {
 var chiefGod: GreekGod
}

let pantheon = Pantheon(chiefGod: hecate)
let zeus = GreekGod(name: "Zeus")
pantheon.chiefGod = zeus

First, you create a new instance of GreekGod named zeus. Second, you assign that new instance to
the chiefGod property on pantheon. You should see a compiler error on that line: Cannot assign to
property: 'pantheon' is a 'let' constant.

This error is telling you that pantheon is an immutable instance, which means you cannot change it.
Value types that are declared as constants cannot have their properties changed, even if these properties
are declared with var in the type’s implementation. You can think of the instances of a value type as
representing a single whole value, like an integer. If you declare an integer as a constant, then you
cannot change some part of it later on.

Remove this assignment to the chiefGod property to silence the compiler error. Leave zeus alone; you
will be using him in the next example.

Listing 18.10 Demoting Zeus
...
struct Pantheon {
 var chiefGod: GreekGod
}

let pantheon = Pantheon(chiefGod: hecate)
let zeus = GreekGod(name: "Zeus")
pantheon.chiefGod = zeus

This works differently for reference types. Try to change the name property on zeus.

Listing 18.11 Changing Zeus’s name
...
struct Pantheon {
 var chiefGod: GreekGod
}

let pantheon = Pantheon(chiefGod: hecate)
let zeus = GreekGod(name: "Zeus")
zeus.name = "Zeus Jr."
zeus.name

This is not that Zeus; this is one of his many sons. You need to update his name with the requisite “Jr.”
Despite zeus being declared with let, you will see that the compiler is absolutely fine with this name
change.

From the Library of wu yuan

ptg16315837

Chapter 18 Value vs. Reference Types

214

Why can we not change the value of a property on a constant that is an instance of a value type, but we
can change the value of a property on a constant that is an instance of a reference type?

Because zeus is an instance of a reference type, it refers to the instance of GreekGod that was made via
this code: GreekGod(name: "Zeus"). When you change the value that the name property stores, you are
not actually changing what zeus really is, which is a reference to a GreekGod. Because you made name
a mutable stored property when you defined the GreekGod class (via its var declaration), you are free
to change it however much you like. No matter how many times you change zeus’s name, zeus still
refers to the same instance.

Using Value and Reference Types Together
This chapter may have made you wonder, “Can I put a value type inside of a reference type? Can I put
a reference type inside of a value type?” The answer to both of these questions is “Yes,” and you did
the latter by adding a property of the class GreekGod to Pantheon. But you must be very careful about
using a reference type inside of a value type. Consider the following example that changes the name of
hecate.

Listing 18.12 The Romans are coming
...
struct Pantheon {
 var chiefGod: GreekGod
}

let pantheon = Pantheon(chiefGod: hecate)
let zeus = GreekGod(name: "Zeus")
zeus.name = "Zeus Jr."
zeus.name

pantheon.chiefGod.name // "AnotherHecate"
let greekPantheon = pantheon
hecate.name = "Trivia"
greekPantheon.chiefGod.name // ???

When you log the value of pantheon.chiefGod.name, the results sidebar bar lists AnotherHecate. You
next assign a copy of pantheon to a new constant named greekPantheon. Remember that Pantheon is
a value type, and so you should expect greekPantheon to receive a copy of pantheon. Afterward, you
change the name of hecate to “Trivia.” The Greeks have given way to the Romans, and so all of the
names are changing. Last, you check the name of the pantheon’s chiefGod and are met with a surprise.

The chiefGod’s name is now “Trivia,” which is surprising because we would expect greekPantheon to
have a copy of pantheon. How did this happen?

Remember that the chiefGod property is of type GreekGod. GreekGod is a class, and is therefore a
reference type. When you created the pantheon with hecate as the chiefGod (Pantheon(chiefGod:
hecate)), you gave the pantheon’s chiefGod a reference to the same instance of GreekGod to
which hecate refers. Consequently, modifying the name of hecate will also change the name of the
pantheon’s chiefGod.

From the Library of wu yuan

ptg16315837

Immutable reference types

215

This example demonstrates the complications of placing a reference type within a value type. You
should expect instances of value types to be copied when assigned to a new variable or constant
or passed into a function. Somewhat confusingly, however, a value type with a reference type in a
property will pass along that same reference to the new variable or constant. That reference will still
point to the same instance as the original reference, and changes to any of them will be reflected in all
of them.

Immutable reference types
The previous section underscores the lesson that you have to be careful if you make a reference type
property within a value type. To avoid the confusion described above, we urge you to avoid using
reference type properties inside of value types in almost all cases.

If you find yourself needing a reference type property in your struct, however, then it is best to use an
immutable instance. For example, imagine that you need a dateCreated property on Pantheon. Use
the Foundation class NSDate to encapsulate this date information.

Listing 18.13 Adding a date to Pantheon
...
struct Pantheon {
 varlet chiefGod: GreekGod
 let dateCreated = NSDate()
}
...
greekPantheon.chiefGod.name
greekPantheon.dateCreated

NSDate() will get the current date and time. The code above will store this information in the
dateCreated property. Now, whenever you create an instance of Pantheon, that instance will have an
immutable property with the date that instance was created.

This property is immutable for two reasons. First, you declare the property with a let, which means
that you cannot reassign to the property. Second, NSDate itself is an immutable class. You cannot
change the instance once you have it. (Remember that you could change hecate’s name property even
though you made that instance with let? NSDate is not like that because the date an instance represents
cannot be changed; the NSDate class does not have any mutable properties or mutating methods that
can modify the instance.)

Go ahead and try to change dateCreated. You will not be able to reassign to this property. Moreover,
you will find that there is no property on this NSDate instance that you can modify. You are stuck with
what you received when you made an instance.

Using reference types within value types can be confusing, but it is not uncommon to have the need. In
these cases, be sure to make these properties immutable. Taking advantage of immutability will help to
protect instances of value types from having properties whose data can change unexpectedly.

From the Library of wu yuan

ptg16315837

Chapter 18 Value vs. Reference Types

216

Copying
The concept of making copies has been lurking behind nearly every topic covered in this chapter.
Developers often want to know if copying an instance yields a shallow or a deep copy. Swift does not
provide any language-level support for making a deep copy, which means copies in Swift are shallow.

Let’s look at an example to get a better sense of what these concepts mean. Create a new instance of
GreekGod and put that and the existing instances into an array.

Listing 18.14 Adding some gods
...
let athena = GreekGod(name: "Athena")
let gods = [athena, hecate, zeus]

You created a new Greek god named athena and added that instance, hecate, and zeus to a new array.
You should see these gods contained within the new array listed in the results sidebar.

Make a copy of the array gods. You will also change the name of zeus, and compare gods to its copy.

Listing 18.15 Copying gods
...
let athena = GreekGod(name: "Athena")
let gods = [athena, hecate, zeus]
let godsCopy = gods
gods.last?.name = "Jupiter"
gods
godsCopy

last refers to the last element an array. It is an optional because the array may be empty. Your results
sidebar should look like Figure 18.5.

Figure 18.5 Comparing gods and godsCopy

Notice that both gods and its copy have the same contents after you change zeus’s name property (via
gods.last?.name = "Jupiter"). Why did changing the name of the last god in the gods array change
the name of the last god in godsCopy? After all, arrays are structs, which means that they are value
types. The expectation for value types is that godsCopy is a distinct copy of gods. Yet a change to an
item in one is reflected in the other; why?

Remember that gods contains instances of GreekGod. GreekGod is a class, and that means it is a
reference type. That means that godsCopy shares the same references to GreekGod instances that gods
has. You have seen something very similar above with pantheon and greekPantheon.

Pulling it all together, last will get the last element in the gods array, which is zeus. So, when you
change the name on this instance, you are changing it for the instance of GreekGod to which zeus
refers. Thus, a change to zeus here will be reflected in both arrays.

From the Library of wu yuan

ptg16315837

Copying

217

This form of copying is referred to as shallow copying. Shallow copying does not create a distinct copy
of an instance; instead, it provides a duplicate of the instance’s reference. Figure 18.6 is a graphical
visualization of this.

Figure 18.6 Shallow copy of an array of gods

A deep copy, on the other hand, would duplicate the instance at the destination of a reference. That
would mean that godsCopy’s indices would not reference the same instances of GreekGod. Instead, a
deep copy of gods would create a new array with references to its own instances of GreekGod. That
form of copying would look something like Figure 18.7.

Figure 18.7 Deep copy of an array of gods

Swift does not supply any means to perform a deep copy. If you would like this behavior, then you will
need to make it yourself.

From the Library of wu yuan

ptg16315837

Chapter 18 Value vs. Reference Types

218

Identity vs. Equality
Now that you understand the difference between value and reference types, you are ready to learn
about equality and identity. Equality refers to two instances having the same values for their observable
characteristics, such as two instances of the String type that have the same text. Identity, on the other
hand, refers to whether two variables or constants point to the same instance in memory. Take a look at
this sample code.

let x = 1
let y = 1
x == y // True

Two constants, x and y, are created. They are both of type Int and hold on to the same value, 1. Not
surprisingly, the equality check, done via ==, evaluates to true. This makes sense because x and y hold
on to exactly the same value.

This is exactly what we want to know from an equality check: do two instances have the same values?
All of Swift’s basic data types (String, Int, Float, Double, Array, and Dictionary) can be checked
for equality.

athena and hecate are both reference types because they point to an instance of the GreekGod class.
Thus, you can check for identity on these two constants using the identity operator: ===. Here is what
that would look like:

athena === hecate // False

This identity check fails because athena and hecate do not point to the same location in memory
where an instance of the GreekGod class lives.

What if you want to check for identity on x and y? You might think you could use the identity operator:
x === y. But this code will generate an error from the compiler. Why? The reason for the error is that
value types are passed by value. Because the Int type is implemented in Swift as a struct, both x and
y are value types. Therefore, you cannot compare these two constants based upon their location in
memory.

What if you tried to check for equality on athena and hecate, like: athena == hecate? You would
see a compiler error. The compiler is telling you that it does not know how to call the == function
on the GreekGod class. If you want to check for equality on classes that you make, you have to teach
your classes how by implementing the == function. Doing so entails conforming to a protocol called
Equatable, which you will read about in Chapter 22.

As a final note, it is important to realize that two constants or variables may be equal (i.e., they have
the same values), but they may not be identical (i.e., they may point to distinct instances of a given
type). But it does not work the other way around: if two variables or constants point to the same
instance in memory, then they will be equal as well.

From the Library of wu yuan

ptg16315837

What Should I Use?

219

What Should I Use?
Structures and classes are well suited for defining many custom types. Before Swift, structs were
so distinct from classes in Mac OS X and iOS development that the use-cases for both types were
obvious. In Swift, however, the functionality added to structs makes their behavior more similar to that
of classes. This similarity makes the decision of which to use somewhat more complicated.

But do not despair. There are important differences between structs and classes that give some
guidance on which to use when. Strict rules are hard to define because there are many factors to
consider, but here are some general guidelines.

1. If you want a type to be passed by value, use a struct. Doing so will ensure that the type is copied
when assigned or passed into a function’s argument.

2. If the type does not need to support subclasses inheriting from it, then use a struct. Structs do not
support inheritance, and so they cannot be subclassed.

3. If the behavior you would like to represent in a type is relatively straightforward and encompasses
a few simple values, consider starting out with a struct. You can always change the type to be a
class later.

4. Use a class in all other cases.

Structs are commonly used when modeling shapes (e.g., rectangles have a width and a height), ranges
(e.g., a race has start and an end), and points in a coordinate system (e.g., a point in a two-dimensional
space has an X and Y value). They are also great for defining data structures: the String, Array, and
Dictionary types are all defined as structs in Swift’s standard library.

There are some other cases in which you might want to use a class instead of a struct, but they will
be somewhat less common than the above. For example, if you want to take advantage of passing a
reference around, but do not want a class to be subclassed, you might ask yourself whether or not you
should use a struct (to avoid inheritance) or a class (to have reference semantics). The answer here is
to use a final class { ... }. Marking a class as final will prevent the class from being subclassed,
and will also offer you the desired reference semantics for instances of the class.

In general, we suggest starting out with a struct unless you absolutely know you need the benefits of
a reference type. Value types are easier to reason about because you do not need to worry about what
happens to an instance when you change values on a copy.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

Part V
Advanced Swift

Swift provides advanced language features that give developers more sophisticated tools to control
their applications. This part of the book introduces concepts that will be essential to the more
experienced Swift developer. Protocols, extensions, and generics provide mechanisms for developing
idiomatic code that leverages the strengths of Swift.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

223

19
Protocols

In Chapter 16, you learned about using access controls to hide information. Hiding information is a
form of encapsulation, which allows you to design your software in such a way that you can change
one part without affecting the rest. Swift also supports another form of encapsulation: a protocol,
which allows you to specify and work with the interface of a type without knowing the type itself. An
interface is a set of properties and methods that a type provides.

Protocols are a more abstract concept than many of the topics you have learned about so far. To get a
handle on protocols and how they work, you will create a function that formats data into a table that
looks like a simple spreadsheet. Next, you will use a protocol to make that function flexible enough
to handle different data sources. Mac and iOS apps commonly separate the presentation of data from
the source that provides the data. This separation is an extremely useful pattern that allows Apple to
provide classes that handle presentation while leaving it up to you to determine how data should be
stored.

Formatting a Table of Data
Create a new playground called Protocols.playground. Begin with a function that takes an array
whose individual elements are themselves arrays – an array of arrays, in other words – and prints the
numbers in a table. Each element of the data array is an array of integers that represent the columns of
a single row, so the total number of rows is data.count.

From the Library of wu yuan

ptg16315837

Chapter 19 Protocols

224

Listing 19.1 Setting up a table

func printTable(data: [[Int]]) {
 for row in data {
 // Create an empty string
 var out = ""

 // Append each item in this row to our string
 for item in row {
 out += " \(item) |"
 }

 // Done - print it!
 print(out)
 }
}

let data = [
 [30, 6],
 [40, 18],
 [50, 20],
]

printTable(data)

Open up the debug area to see a simple table displaying the data:

30 | 6 |
40 | 18 |
50 | 20 |

Next, you will add the ability to label each row. Labeling the rows is a little tricky because you want
all the row labels to be aligned, so you will need to determine which label is the longest and pad the
shorter rows with spaces. This will be easier if you also define a helper function that can create a
String containing a specified number of spaces.

From the Library of wu yuan

ptg16315837

Formatting a Table of Data

225

Listing 19.2 Labeling the rows
func padding(amount: Int) -> String {
 var paddingString = ""
 for _ in 0 ..< amount {
 paddingString += " "
 }
 return paddingString
}

func printTable(data: [[Int]]) {(rowLabels: [String], data: [[Int]]) {
 for row in data {
 // Create an empty string
 var out = ""

 // Create an array of the width of each row label
 let rowLabelWidths = rowLabels.map { $0.characters.count }

 // Determine length of longest row label
 guard let maxRowLabelWidth = rowLabelWidths.maxElement() else {
 return
 }

 for (i, row) in data.enumerate() {
 // Pad the row label out so they are all the same length
 let paddingAmount = maxRowLabelWidth - rowLabelWidths[i]
 var out = rowLabels[i] + padding(paddingAmount) + " |"

 // Append each item in this row to our string
 for item in row {
 out += " \(item) |"
 }

 // Done - print it!
 print(out)
 }
}

let rowLabels = ["Joe", "Karen", "Fred"]
let data = [
 [30, 6],
 [40, 18],
 [50, 20],
]

printTable(rowLabels, data: data)

You need to determine the width of the longest row label in order to align all the rows correctly. First,
you use rowLabels.map to create a new array containing the width of each label. Next, you use a
guard statement to safely unwrap the optional returned by rowLabelWidths.maxElement(), storing the
result into maxRowLabelWidth. (If rowLabelWidths.maxElement() returns nil, printTable(_:data:)
will immediately return because there are no rows to print anyway.) Then, when you iterate over
each row of the data, you insert some padding to rows that are shorter than the maximum width. The
paddingAmount instance holds the amount of padding needed for a row, and padding(paddingAmount)
creates a string containing paddingAmount spaces.

From the Library of wu yuan

ptg16315837

Chapter 19 Protocols

226

The end result, in your debug area, is a nicely aligned table with labeled rows:

Joe | 30 | 6 |
Karen | 40 | 18 |
Fred | 50 | 20 |

Finally, add the ability to label each column. Labeling columns is trickier still. You want all the
columns to line up vertically, which may require padding all of the data items. You will have to keep
track of the width of each column label and pad all the items in that column out to that length.

From the Library of wu yuan

ptg16315837

Formatting a Table of Data

227

Listing 19.3 Labeling the columns
func printTable(rowLabels: [String], columnLabels: [String], data: [[Int]]) {
 // Create an array of the width of each row label
 let rowLabelWidths = rowLabels.map { $0.characters.count }

 // Determine length of longest row label
 guard let maxRowLabelWidth = rowLabelWidths.maxElement() else {
 return
 }

 // Create first row containing column headers
 var firstRow: String = padding(maxRowLabelWidth) + " |"

 // Also keep track of the width of each column
 var columnWidths = [Int]()

 for columnLabel in columnLabels {
 let columnHeader = " \(columnLabel) |"
 firstRow += columnHeader
 columnWidths.append(columnHeader.characters.count)
 }
 print(firstRow)

 for (i, row) in data.enumerate() {
 // Pad the row label out so they are all the same length
 let paddingAmount = maxRowLabelWidth - rowLabelWidths[i]
 var out = rowLabels[i] + padding(paddingAmount) + " |"

 // Append each item in this row to our string
 for item in row {
 out += " \(item) |"
 for (j, item) in row.enumerate() {
 let itemString = " \(item) |"
 let paddingAmount = columnWidths[j] - itemString.characters.count
 out += padding(paddingAmount) + itemString
 }

 // Done - print it!
 print(out)
 }
}

let rowLabels = ["Joe", "Karen", "Fred"]
let columnLabels = ["Age", "Years of Experience"]
let data = [
 [30, 6],
 [40, 18],
 [50, 20],
]

printTable(rowLabels, columnLabels: columnLabels, data: data)

You create and print firstRow, which contains all of the column headers. As you are constructing
the first row, you also record the width of each column header in the columnWidths array.
Then, when you append each data item to the output row, you use the columnWidths array and
padding(paddingAmount) to pad each item so that it is the same width as its column header.

From the Library of wu yuan

ptg16315837

Chapter 19 Protocols

228

Check your debug area again. You now have a well-formatted table of data.

 | Age | Years of Experience |
Joe | 30 | 6 |
Karen | 40 | 18 |
Fred | 50 | 20 |

However, there is at least one major problem with the printTable(_:columnLabels:data:) function:
it is very difficult to use! You have to have separate arrays for row labels, column labels, and the data,
and you have to manually make sure the number of row labels and column labels matches the number
of elements in the data array.

You are much more likely to want to represent information like this using structures and classes.
Replace the part of the code where you call printTable(_:columnLabels:data:) with some model
objects, which are types that represent the data your app works with.

Listing 19.4 Using model objects
...
let rowLabels = ["Joe", "Karen", "Fred"]
let columnLabels = ["Age", "Years of Experience"]
let data = [
 [30, 6],
 [40, 18],
 [50, 20],
]

printTable(rowLabels, columnLabels: columnLabels, data: data)
struct Person {
 let name: String
 let age: Int
 let yearsOfExperience: Int
}

struct Department {
 let name: String
 var people = [Person]()

 init(name: String) {
 self.name = name
 }

 mutating func addPerson(person: Person) {
 people.append(person)
 }
}

var department = Department(name: "Engineering")
department.addPerson(Person(name: "Joe", age: 30, yearsOfExperience: 6))
department.addPerson(Person(name: "Karen", age: 40, yearsOfExperience: 18))
department.addPerson(Person(name: "Fred", age: 50, yearsOfExperience: 20))

You now have a Department, and you would like to be able to print out the details of its people
using the printTable(_:columnLabels:data:) function. You could modify the function to take
a Department instead of the three arguments it takes now. However, the current implementation of
printTable(_:columnLabels:data:) could be used to print any kind of tabular data, and it would be
nice to keep that feature. A protocol can help to preserve this functionality.

From the Library of wu yuan

ptg16315837

Protocols

229

Protocols
A protocol allows you to define the interface you want a type to satisfy. A type that satisfies a protocol
is said to conform to the protocol.

Define a protocol that specifies the interface you need for the printTable(_:columnLabels:data:)
function. The printTable(_:columnLabels:data:) function needs to know how many rows and
columns there are, what the label for each row and column is, and what the item of data to display
in each cell should be. It does not matter to the Swift compiler where in your playground file you
put this protocol. But it probably makes the most sense to put it at the top of the file, just before
printTable(_:columnLabels:data:), because you are going to use the protocol in the function.

Listing 19.5 Defining a protocol
protocol TabularDataSource {
 var numberOfRows: Int { get }
 var numberOfColumns: Int { get }

 func labelForRow(row: Int) -> String
 func labelForColumn(column: Int) -> String

 func itemForRow(row: Int, column: Int) -> Int
}
...

The syntax for a protocol should look familiar to you. It is very similar to defining a structure
or a class, except that all the computed property and function definitions are omitted. The
TabularDataSource protocol states that any conforming type must have two properties: numberOfRows
and numberOfColumns. The syntax { get } signifies that these properties can be read. If the property
were intended to be read/write, you would use { get set }. Note that marking a protocol property
with { get } does not exclude the possibility that a conforming type might have a property that is
read/write. It only indicates that the protocol requires it to be readable. Finally, TabularDataSource
specifies that a conforming type must have the three methods listed with the exact types that are listed.

A protocol defines the minimum set of properties and methods a type must have. The type can have
more than what the protocol lists – extra properties and methods are fine as long as all the requirements
of the protocol are present.

Make Department conform to the TabularDataSource protocol. Begin by declaring that it conforms.

Listing 19.6 Declaring that Department conforms to TabularDataSource
...
struct Department: TabularDataSource {
...
}

The syntax for conforming to a protocol is to add : ProtocolName after the name of the type. (This
looks similar to how you declare a superclass. We will cover how protocols and superclasses can be
used together later.)

Your playground file now has an error. Open up the debug area to see the details. You have claimed
that Department conforms to TabularDataSource, but Department is missing all the properties and
methods that TabularDataSource requires. Add implementations of them all.

From the Library of wu yuan

ptg16315837

Chapter 19 Protocols

230

Listing 19.7 Adding required properties and methods
...
struct Department: TabularDataSource {
 let name: String
 var people = [Person]()

 init(name: String) {
 self.name = name
 }

 mutating func addPerson(person: Person) {
 people.append(person)
 }

 var numberOfRows: Int {
 return people.count
 }

 var numberOfColumns: Int {
 return 2
 }

 func labelForRow(row: Int) -> String {
 return people[row].name
 }

 func labelForColumn(column: Int) -> String {
 switch column {
 case 0: return "Age"
 case 1: return "Years of Experience"
 default: fatalError("Invalid column!")
 }
 }

 func itemForRow(row: Int, column: Int) -> Int {
 let person = people[row]
 switch column {
 case 0: return person.age
 case 1: return person.yearsOfExperience
 default: fatalError("Invalid column!")
 }
 }
}
...

A Department has a row for each person, so its numberOfRows property returns the number of people in
the department. Each person has two properties that should be displayed, so numberOfColumns returns
two. The label of each row is the name of the person to be shown on that row. labelForColumn(_:)
and itemForRow(_:) are a little more interesting: you use a switch statement to return one of the two
column headers. (Why is there a default case? Refer back to Chapter 5 if you are unsure.)

The error in your playground is gone now that Department conforms to TabularDataSource.
However, you still need to go back and modify printTable(_:columnLabels:data:) to
accept and work with a TabularDataSource, because now you do not have any way of calling
printTable(_:columnLabels:data:) with your department. Protocols do not just define the
properties and methods a conforming type must supply. They can also be used as types themselves:

From the Library of wu yuan

ptg16315837

Protocols

231

you can have variables, function arguments, and return values that have the type of a protocol. Change
printTable(_:) to take a data source of type TabularDataSource, now that the protocol provides all
the same data as the old arguments did (including all the column and row headers and the amount of
data available).

Listing 19.8 Making printTable(_:) take a TabularDataSource
func printTable(rowLabels: [String], columnLabels: [String], data: [[Int]]) {
func printTable(dataSource: TabularDataSource) {
 // Create arrays of the row and column labels
 let rowLabels = (0 ..< dataSource.numberOfRows).map { dataSource.labelForRow($0) }
 let columnLabels = (0 ..< dataSource.numberOfColumns).map {
 dataSource.labelForColumn($0)
 }

 // Create an array of the width of each row label
 let rowLabelWidths = rowLabels.map { $0.characters.count }

 // Determine length of longest row label
 guard let maxRowLabelWidth = rowLabelWidths.maxElement() else {
 return
 }

 // Create first row containing column headers
 var firstRow: String = padding(maxRowLabelWidth) + " |"

 // Also keep track of the width of each column
 var columnWidths = [Int]()

 for columnLabel in columnLabels {
 let columnHeader = " \(columnLabel) |"
 firstRow += columnHeader
 columnWidths.append(columnHeader.characters.count)
 }
 print(firstRow)

 for (i, row) in data.enumerate() {
 for i in 0 ..< dataSource.numberOfRows {
 // Pad the row label out so they are all the same length
 let paddingAmount = maxRowLabelWidth - rowLabelWidths[i]
 var out = rowLabels[i] + padding(paddingAmount) + " |"

 // Append each item in this row to our string
 for (j, item) in row.enumerate() {
 for j in 0 ..< dataSource.numberOfColumns {
 let item = dataSource.itemForRow(i, column: j)
 let itemString = " \(item) |"
 let paddingAmount = columnWidths[j] - itemString.characters.count
 out += padding(paddingAmount) + itemString
 }

 // Done - print it!
 print(out)
 }
}
...

You have seen the map(_:) method on arrays, but here you call it on two ranges of numbers. It
functions exactly the same way: an array is returned that contains the result of calling the closure you

From the Library of wu yuan

ptg16315837

Chapter 19 Protocols

232

provided on each of the numbers in the range in order. Under the hood, the map(_:) available on arrays
and the map(_:) available on ranges is actually the same method. You will learn more about this in
Chapter 23.

The Department type now conforms to TabularDataSource, and printTable(_:) has been
modified to accept a TabularDataSource. Therefore, you can print your department. Add a call to
printTable(_:).

Listing 19.9 Printing Department

...
var department = Department(name: "Engineering")
department.addPerson(Person(name: "Joe", age: 30, yearsOfExperience: 6))
department.addPerson(Person(name: "Karen", age: 40, yearsOfExperience: 18))
department.addPerson(Person(name: "Fred", age: 50, yearsOfExperience: 20))

printTable(department)

Confirm in the debug area that the output still reflects the department you created:

 | Age | Years of Experience |
Joe | 30 | 6 |
Karen | 40 | 18 |
Fred | 50 | 20 |

Protocol Conformance
As noted earlier, the syntax for protocol conformance looks exactly the same as the syntax you use to
declare a class’s superclass, as seen in Chapter 15. This brings up a few questions:

1. What types can conform to protocols?

2. Can a type conform to multiple protocols?

3. Can a class have a superclass and still conform to protocols?

All types can conform to protocols. You made a structure (Department) conform to a protocol. Enums
and classes can also conform to protocols. The syntax for declaring that an enum conforms to a
protocol is exactly the same as it is for a struct: a colon and the protocol name follow the declaration of
the type. (Classes can be a little more complicated. We will get to them in a moment.)

It is also possible for a type to conform to multiple protocols. One of the protocols defined by Swift
is named CustomStringConvertible, which types can implement when they want to control how
their instances are converted into string representations. Other functions, like print(), will check
to see if the values being printed conform to CustomStringConvertible when deciding how to
display them. CustomStringConvertible has a single requirement: the type must have a gettable
property named description that returns a String. Modify Department so that it conforms to both
TabularDataSource and CustomStringConvertible, using a comma to separate the protocols.

From the Library of wu yuan

ptg16315837

Protocol Inheritance

233

Listing 19.10 Conforming to CustomStringConvertible
...
struct Department: TabularDataSource, CustomStringConvertible {
 let name: String
 var people = [Person]()

 var description: String {
 return "Department (\(name))"
 }
...
}

Here, you implement description as a read-only, computed property. You can now see the name of
your department when you print it.

Listing 19.11 Printing the department’s name
...
printTable(department)
print(department)

Finally, classes can also conform to protocols. If the class does not have a superclass, the syntax is the
same as for structs and enums:

class ClassName: ProtocolOne, ProtocolTwo {
 // ...
}

If the class does have a superclass, the name of the superclass comes first, followed by the protocol (or
protocols).

class ClassName: SuperClass, ProtocolOne, ProtocolTwo {
 // ...
}

Protocol Inheritance
Swift supports protocol inheritance. A protocol that inherits from another protocol requires
conforming types to provide implementations for all the properties and methods required by both
itself and the protocol it inherits from. This is different from class inheritance, which defines a close
relationship between the superclass and subclass. Protocol inheritance merely adds any requirements
from the parent protocol to the child protocol. For example, modify TabularDataSource so that it
inherits from the CustomStringConvertible protocol.

Listing 19.12 Making TabularDataSource inherit from
CustomStringConvertible
protocol TabularDataSource: CustomStringConvertible {
 var numberOfRows: Int { get }
 var numberOfColumns: Int { get }

 func labelForRow(row: Int) -> String
 func labelForColumn(column: Int) -> String

 func itemForRow(row: Int, column: Int) -> Int
}
...

From the Library of wu yuan

ptg16315837

Chapter 19 Protocols

234

Now, any type that conforms to TabularDataSource must also conform to CustomStringConvertible,
meaning it has to supply all the properties and methods listed in TabularDataSource as well as the
description property required by CustomStringConvertible. Make use of this in printTable(_:) to
print a heading on the table. You will no longer need the call to print() you added in Listing 19.11, so
delete it.

Listing 19.13 Printing table heading
...
func printTable(dataSource: TabularDataSource) {
 print("Table: \(dataSource.description)")
 ...
}
...
printTable(department)
print(department)

Now the printout in your debug area includes a description of the table.

Table: Department (Engineering)
 | Age | Years of Experience |
Joe | 30 | 6 |
Karen | 40 | 18 |
Fred | 50 | 20 |

Protocols are allowed to inherit from multiple other protocols, just as types can conform to multiple
protocols. The syntax for multiple protocol inheritance is what you probably expect – separate
additional parent protocols with commas, like so:

protocol MyProtocol: MyOtherProtocol, CustomStringConvertible {
 // ... requirements of MyProtocol
}

Protocol Composition
Protocol inheritance is a powerful tool that lets you easily create a new protocol that adds requirements
to an existing protocol or set of protocols. Nevertheless, using protocol inheritance can potentially lead
you to make poor decisions in creating your types.

In fact, that is exactly what has happened with TabularDataSource. You made TabularDataSource
inherit from CustomStringConvertible because you wanted to be able to print a description of the
data source. (In fairness, you did it because we told you to.) But there is not anything inherently
CustomStringConvertible about a tabular data source. Go back and fix that misguided attempt to
print data sources.

Listing 19.14 TabularDataSource should not be CustomStringConvertible
protocol TabularDataSource: CustomStringConvertible {
...
}

The compiler now rightfully complains when you try to get the description of the data source
passed to printTable(_:). You can use protocol composition to solve this problem without polluting
TabularDataSource with the unrelated requirement that it be convertible to a string. Protocol
composition allows you to state that a type must conform to multiple protocols.

From the Library of wu yuan

ptg16315837

Mutating Methods

235

Listing 19.15 Making printTable’s argument conform to
CustomStringConvertible
...
func printTable(dataSource: TabularDataSource
 protocol<TabularDataSource, CustomStringConvertible>) {
 print("Table: \(dataSource.description)")
 ...
}

The syntax for protocol composition uses the keyword protocol to signal to the compiler that you
are combining multiple protocols into a single requirement. You can use protocol composition with
more than two protocols by adding additional protocols, separated by commas, inside the angle
brackets (<>). The example above requires that dataSource conform to both TabularDataSource and
CustomStringConvertible.

Consider another possibility. You could create a new protocol that inherits from both
TabularDataSource and CustomStringConvertible, like so:

protocol PrintableTabularDataSource: TabularDataSource, CustomStringConvertible {
}

You could then use that protocol as the type of the argument to printTable(_:). Both
PrintableTabularDataSource and protocol<TabularDataSource, CustomStringConvertible>
require conforming types to implement all properties and methods required by TabularDataSource
and CustomStringConvertible. What is the difference between them?

The difference is that PrintableTabularDataSource is a distinct type. To use it, you would
have to modify Department to state that it conforms to PrintableTabularDataSource – even
though it already fulfills all the requirements. On the other hand, protocol<TabularDataSource,
CustomStringConvertible> does not create a new type. It only indicates that printTable(_:)’s
argument conforms to both of the protocols listed. So you do not have to go back and annotate
Department. It already conforms to both TabularDataSource and CustomStringConvertible, so it
also conforms to protocol<TabularDataSource, CustomStringConvertible>.

Mutating Methods
Recall from Chapter 14 and Chapter 15 that methods on value types (structs and enums) cannot modify
self unless the method is marked as mutating. Methods in protocols default to nonmutating. In the
Lightbulb enum from Chapter 14, the toggle() method was mutating.

enum Lightbulb {
 case On
 case Off

 mutating func toggle() {
 switch self {
 case .On:
 self = .Off

 case .Off:
 self = .On
 }
 }
}

From the Library of wu yuan

ptg16315837

Chapter 19 Protocols

236

Suppose you want to define in a protocol that an instance is “toggleable”:

protocol Toggleable {
 func toggle()
}

Declaring that Lightbulb conforms to Toggleable would result in a compiler error. The message you
get includes a note that explains the problem:

error: type 'Lightbulb' does not conform to protocol 'Toggleable'

note: candidate is marked 'mutating' but protocol does not allow it
mutating func toggle() {
 ^

The note points out that in Lightbulb, the toggle method is marked as mutating, but the Toggleable
protocol expects a nonmutating function. You can fix this problem by marking toggle as mutating in
the protocol definition:

protocol Toggleable {
 mutating func toggle()
}

A class that conforms to the Toggleable protocol would not need to mark its toggle method as
mutating. Methods on classes are always allowed to change properties of self because they are
reference types.

Silver Challenge
The printTable(_:) function has a bug – it crashes if any of the data items are longer than the label of
their column. Try changing Joe’s age to 1000 to see this in action. Fix the bug. (For an easier version
of this challenge, just make the function not crash. For a harder version, make sure all the rows and
columns of the table are still aligned correctly.)

Gold Challenge
Create a new type, BookCollection, that conforms to TabularDataSource. Calling printTable(_:)
on a book collection should show a table of books with columns for titles, authors, and average reviews
on Amazon. (Unless all the books you use have very short titles and author names, you will need to
have completed the previous challenge!)

From the Library of wu yuan

ptg16315837

237

20
Error Handling

How often has a piece of software you have been using crashed or done something it was not supposed
to do? The majority of the time, these issues are caused by incorrect error handling. Error handling is
one of the unsung heroes of software development: Nobody thinks of it as a priority, and if it is done
correctly nobody notices. But it is absolutely critical – users of your software will certainly notice (and
complain!) if it is done poorly. In this chapter you will explore the tools that Swift provides to catch
and handle errors.

Classes of Errors
There are two broad categories of error that can occur: recoverable errors and nonrecoverable errors.

Recoverable errors are typically events that can occur that you must be ready for and handle. Common
examples of recoverable errors are:

• trying to open a file that does not exist

• trying to communicate with a server that is down

• trying to communicate when a device does not have an Internet connection

Swift provides you with a rich set of tools for dealing with recoverable errors. You have become
accustomed to Swift enforcing safety rules at compile time, and handling errors is no different. When
you call a function that might fail with a recoverable error, Swift will require you to acknowledge and
deal with that possibility.

Nonrecoverable errors are really just a special kind of bug. You have already encountered one: force-
unwrapping an optional that contains nil. Another example is trying to access an element past the end
of an array. These nonrecoverable errors will cause your program to trap.

Recall from Chapter 4 that when your program traps, it immediately stops executing. A trap is a low-
level command to the OS to immediately stop the currently executing program. If you are running the
program from Xcode, it will stop in the debugger and show you where the error occurred. For a user
running your program, however, a trap looks the same as a crash – the program immediately shuts
down.

From the Library of wu yuan

ptg16315837

Chapter 20 Error Handling

238

Why is Swift so heavy-handed with this class of error? The name gives a hint: these errors are
not recoverable, meaning there is nothing your program could do to fix the problem. Think about
unwrapping an optional, for example. When you force-unwrap an optional, you expect to get a value,
and the rest of your code is written assuming there is a value to work with. If the optional is nil,
there is no value. The only reasonable thing Swift can do is immediately stop the program. If your
program did continue, either it would crash when it tried to access a nonexistent value or, worse, it
could continue to run but produce incorrect results. (Both of these possibilities come up in less-safe
languages like C.)

In this chapter, you will build a very simple two-phase compiler. In doing so, you will implement a
function that can evaluate basic mathematical expressions. For example, you will provide the input
string "10 + 3 + 5", and the function will return the integer 18. Along the way, you will make use of
Swift’s facilities for dealing with both recoverable and nonrecoverable errors.

Lexing an Input String
The first phase of your expression-evaluating compiler is lexing. Lexing is the process of turning some
input into a sequence of tokens. A token is something with meaning, like a number or a plus sign (the
two tokens your compiler will recognize). Lexing is sometimes referred to as “tokenizing” because
you are turning some meaningless-to-the-compiler input (like a string) into a sequence of meaningful
tokens.

Create a new playground named ErrorHandling. Define an enumeration that has cases for the two
kinds of token.

Listing 20.1 Declaring the Token type
import Cocoa

enum Token {
 case Number(Int)
 case Plus
}

Next, start building your lexer. To lex an input string, you will need to access the individual characters
in the input string one by one. You will need to keep track of your current position in the collection of
characters as well. Create the Lexer class and give it these two properties.

Listing 20.2 Creating Lexer
import Cocoa

enum Token {
 case Number(Int)
 case Plus
}

class Lexer {
 let input: String.CharacterView
 var position: String.CharacterView.Index

 init(input: String) {
 self.input = input.characters
 self.position = self.input.startIndex
 }
}

From the Library of wu yuan

ptg16315837

Lexing an Input String

239

Recall from Chapter 7 that every string has a characters property, which is a collection
of Characters. The type of the characters property is String.CharacterView. Every
String.CharacterView has startIndex and endIndex properties that let you step through the
characters. You initialize the input property to the input String’s characters property and initialize
the position property to the beginning of that character view.

Lexing the input characters is a straightforward process. The steps you will implement are outlined in
Figure 20.1.

Figure 20.1 Lexing algorithm

From the Library of wu yuan

ptg16315837

Chapter 20 Error Handling

240

To implement this algorithm, Lexer will need two basic operations: a way to peek at the next character
from the input and a way to advance the current position. Peeking at the next character requires a way
to indicate that the lexer has reached the end of its input, so make it return an optional.

Listing 20.3 Implementing peek()
...
class Lexer {
 let input: String.CharacterView
 var position: String.CharacterView.Index

 init(input: String) {
 self.input = input.characters
 self.position = self.input.startIndex
 }

 func peek() -> Character? {
 guard position < input.endIndex else {
 return nil
 }
 return input[position]
 }
}

You use a guard statement to ensure that you have not reached the end of the input, returning nil if
you have. If there is still input remaining, you return the character at the current position.

Now that the lexer can peek at the current character, it also needs a way to advance to the next
character. Advancing is actually very simple: just increment position.

Listing 20.4 Implementing advance()
...
class Lexer {
 ...

 func peek() -> Character? {
 guard position < input.endIndex else {
 return nil
 }
 return input[position]
 }

 func advance() {
 ++position
 }
}

From the Library of wu yuan

ptg16315837

Lexing an Input String

241

Before moving on, there is an opportunity here to introduce a check for a nonrecoverable error. As you
implement the rest of Lexer, you will be calling peek() and advance(). peek() can be called any time,
but advance() should only be called if you are not already at the end of the input. Add an assertion to
advance() that checks for this condition.

Listing 20.5 Adding an assertion to advance()
...
class Lexer {
 ...

 func advance() {
 assert(position < input.endIndex, "Cannot advance past the end!")
 ++position
 }
}

What does assert(_:_:) do? Its first argument is a condition to check. If the condition evaluates to
true, nothing happens. If the condition evaluates to false, however, your program will trap in the
debugger with the message you provide as the second argument.

Calls to the assert(_:_:) function will only be evaluated if your program is built in debug mode.
Debug mode is the default when you are working in a playground or running a project in Xcode.
Release mode is what Xcode uses when you build an app for submission to the App Store. Among
other things, building in Release mode turns on a number of compiler optimizations and removes all
calls to assert(_:_:). If you want to keep your assertions around even in Release mode, you can use
precondition(_:_:) instead. It takes the same arguments and has the same effect as assert(_:_:),
but it is not removed when your app is built for release.

From the Library of wu yuan

ptg16315837

Chapter 20 Error Handling

242

Now that Lexer has the building blocks you need, it is time to start implementing the lexing algorithm.
The output of lexing will be an array of Tokens, but it is also possible for lexing to fail. To indicate that
a function or method might emit an error, add the keyword throws after the parentheses containing the
arguments. (This implementation of lex() is incomplete and will not compile, but you will finish it
shortly.)

Listing 20.6 Declaring the throwing lex() method
...
class Lexer {
 ...

 func advance() {
 assert(position < input.endIndex, "Cannot advance past the end!")
 ++position
 }

 func lex() throws -> [Token] {
 var tokens = [Token]()

 while let nextCharacter = peek() {
 switch nextCharacter {
 case "0" ... "9":
 // Start of a number - need to grab the rest

 case "+":
 tokens.append(.Plus)
 advance()

 case " ":
 // Just advance to ignore spaces
 advance()

 default:
 // Something unexpected - need to send back an error
 }
 }

 return tokens
 }
}

You have now implemented most of the lexing algorithm. You start by creating an array, tokens, that
will hold every Token you lex. You use a while let condition to loop until you reach the end of the
input. For each character you look at, you go into one of the four cases. You already implemented what
to do if the character is a plus (append .Plus to tokens and then advance to the next character) or a
space (ignore it and advance to the next character).

From the Library of wu yuan

ptg16315837

Lexing an Input String

243

There are two cases left to implement. Let’s start with the default case. If this case matches, then a
character you were not expecting is next. That means you need to throw an error. In Swift, you use the
throws keyword to send, or “throw,” an error back to the caller.

What can you throw? You must throw an instance of a type that conforms to the ErrorType protocol.
Most of the time, errors you want to throw will lend themselves to being defined as enumerations, and
this is no exception.

Declare an enumeration nested inside the Lexer class that will let you express lexing errors.

Listing 20.7 Declaring Lexer.Error
...
class Lexer {
 enum Error: ErrorType {
 case InvalidCharacter(Character)
 }

 let input: String.CharacterView
 var position: String.CharacterView.Index

 ...
}

If you Command-click on the ErrorType protocol, you will find that it is an empty protocol. That
is, it does not require any properties or methods to be present. Any type you write can conform to
ErrorType just by stating that it does, but enumerations are by far the most common ErrorTypes.

From the Library of wu yuan

ptg16315837

Chapter 20 Error Handling

244

Now that you have a throwable type, implement the default case in the lex() method to throw an
instance of your new Error enum.

Listing 20.8 Throwing an error
...
class Lexer {
 ...

 func lex() throws -> [Token] {
 var tokens = [Token]()

 while let nextCharacter = peek() {
 switch nextCharacter {
 case "0" ... "9":
 // Start of a number - need to grab the rest

 case "+":
 tokens.append(.Plus)
 advance()

 case " ":
 // Just advance to ignore spaces
 advance()

 default:
 // Something unexpected - need to send back an error
 throw Error.InvalidCharacter(nextCharacter)
 }
 }

 return tokens
 }
}

Like return, throw causes the function to immediately stop executing and go back to its caller.

From the Library of wu yuan

ptg16315837

Lexing an Input String

245

Finally, the lexer needs to be able to extract integers from the input. Implement getNumber(), which
builds up integers one digit at a time using the same peek() and advance() tools you are using in
lex(). Next, update lex() by adding a call to getNumber() and appending the number to the array of
tokens.

Listing 20.9 Implementing Lexer.getNumber()
...
class Lexer {
 ...

 func getNumber() -> Int {
 var value = 0

 while let nextCharacter = peek() {
 switch nextCharacter {
 case "0" ... "9":
 // Another digit - add it into value
 let digitValue = Int(String(nextCharacter))!
 value = 10*value + digitValue
 advance()

 default:
 // A non-digit - go back to regular lexing
 return value
 }
 }

 return value
 }

 func lex() throws -> [Token] {
 var tokens = [Token]()

 while let nextCharacter = peek() {
 switch nextCharacter {
 case "0" ... "9":
 // Start of a number - need to grab the rest
 let value = getNumber()
 tokens.append(.Number(value))

 case "+":
 tokens.append(.Plus)
 advance()

 case " ":
 // Just advance to ignore spaces
 advance()

 default:
 throw Error.InvalidCharacter(nextCharacter)
 }
 }

 return tokens
 }
}

At this point, all your errors should be gone.

From the Library of wu yuan

ptg16315837

Chapter 20 Error Handling

246

getNumber() loops over input characters, accumulating digits into a single integer value.
Note that you do something we have cautioned against – force-unwrapping an optional – in
Int(String(nextCharacter))!. However, it is perfectly safe in this case. Because you know
nextCharacter contains a single digit, converting it to an Int will always succeed and never return nil.
As soon as getNumber() encounters a character that is not a digit (or the end of the input), it stops and
returns the accumulated value.

Lexer is complete! It is time to put it to the test. Write a new function that takes an input string and
tries to lex it, and call it with a couple of trial inputs. (This function will not work quite yet – as you
type it in, try to guess why.)

Listing 20.10 Evaluating the lexer
...
func evaluate(input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)
 let tokens = lexer.lex()
 print("Lexer output: \(tokens)")
}

evaluate("10 + 3 + 5")
evaluate("1 + 2 + abcdefg")

evaluate(_:) takes an input String, creates a Lexer, and lexes the input into Tokens. But the compiler
does not allow what you have entered. Note the error message on the line where you call lex(): Call
can throw, but it is not marked with 'try' and the error is not handled. The compiler
is telling you that because the lex() method is marked as throws, calls to lex() must be prepared to
handle an error.

Catching Errors
To handle errors, Swift uses a control construct you have not yet seen: do / catch, with at least one
try statement inside of the do. We will explain in a moment. First, modify evaluate(_:) to use this
control flow to handle errors coming from lex().

Listing 20.11 Error handling in evaluate(_:)
...
func evaluate(input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")
 } catch {
 print("An error occurred: \(error)")
 }
}

From the Library of wu yuan

ptg16315837

Catching Errors

247

What do all these new keywords mean? do introduces a new scope, much like an if statement. Inside
of the do scope, you can write code as normal, like calling print(). In addition to that, you can
call functions or methods that are marked as throws. Each such call must be indicated with the try
keyword.

At the end of the do block, you write a catch block. If any of the try calls inside the do block throw an
error, the catch block will run, with the thrown error value bound to the constant error.

You should now be seeing the output of running evaluate(_:). (Make sure to show the debug area
with Command-Shift-Y if it is not already open.)

Evaluating: 10 + 3 + 5
Lexer output: [Token.Number(10), Token.Plus,
 Token.Number(3), Token.Plus, Token.Number(5)]
Evaluating: 1 + 2 + abcdefg
An error occurred: Lexer.Error.InvalidCharacter("a")

The catch block you wrote above did not specify a particular kind of error, so it will catch any thrown
ErrorType. You can add additional catch blocks to catch specific kinds of errors. In this case, you
know that the lexer could throw a Lexer.Error.InvalidCharacter error, so add a catch block for it.

Listing 20.12 Catching an InvalidCharacter error
...
func evaluate(input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")
 } catch Lexer.Error.InvalidCharacter(let character) {
 print("Input contained an invalid character: \(character)")
 } catch {
 print("An error occurred: \(error)")
 }
}

You added a catch block that is specifically looking for the Lexer.Error.InvalidCharacter error.
catch blocks support pattern matching, just like switch statements, so you were able to bind the
invalid character to a constant for use within the catch block. You should see a more specific error
message now:

Evaluating: 10 + 3 + 5
Lexer output: [Token.Number(10), Token.Plus,
 Token.Number(3), Token.Plus, Token.Number(5)]
Evaluating: 1 + 2 + abcdefg
Input contained an invalid character: a

Congratulations, the lexing phase of your compiler is complete! Before moving on to parsing, delete
the call to evaluate(_:) that is causing an error.

Listing 20.13 Removing bad input
...
evaluate("10 + 3 + 5")
evaluate("1 + 2 + abcdefg")

From the Library of wu yuan

ptg16315837

Chapter 20 Error Handling

248

Parsing the Token Array
Now that your lexer is complete, you can turn an input string into an array of Tokens, each of which
is either a .Number or a .Plus. The algorithm to parse this sequence of tokens is more restrictive than
the algorithm you used for lexing, because the order in which the tokens appear is very important. The
rules are:

• The first token must be a number.

• After parsing a number, either the parser must be at the end of input, or the next token must be
.Plus.

• After parsing a .Plus, the next token must be a number.

The setup of your parser will be very similar to the lexer, although a bit simpler. The parser does not
need separate peek() and advance() methods. They can be combined into one getNextToken()
method that returns the next Token or nil if all tokens have been consumed.

Create the Parser class and implement getNextToken().

Listing 20.14 Beginning the implementation of Parser
...
class Lexer {
 ...
}

class Parser {
 let tokens: [Token]
 var position = 0

 init(tokens: [Token]) {
 self.tokens = tokens
 }

 func getNextToken() -> Token? {
 guard position < tokens.count else {
 return nil
 }
 return tokens[position++]
 }
}
...

A Parser is initialized with an array of tokens and begins with a position of 0. The getNextToken()
uses guard to check that there are more tokens remaining, and if there are, returns the next one.

Two of the three rules for our parser used the phrase “must be a number.” A good place to start
implementing the parser is with a method to get a number. If the next token must be a number, there
are two different error cases that need to be considered. The parser might be at the end of the token
array, which means there is no number left. Or the next token might be a .Plus instead of a number.
For example, someone may have fed the parser the input string "10 + + 5".

From the Library of wu yuan

ptg16315837

Parsing the Token Array

249

Define an error enumeration conforming to ErrorType for both of these cases.

Listing 20.15 Defining possible Parser errors
...
class Parser {
 enum Error: ErrorType {
 case UnexpectedEndOfInput
 case InvalidToken(Token)
 }

 let tokens: [Token]
 var position = 0

 ...
}
...

Now that you can express the possible errors you might encounter when trying to get a number, add a
method that gets the value of the next .Number token or throws an error if it cannot.

Listing 20.16 Implementing Parser.getNumber()
...
class Parser {
 ...

 func getNextToken() -> Token? {
 guard position < tokens.count else {
 return nil
 }
 return tokens[position++]
 }

 func getNumber() throws -> Int {
 guard let token = getNextToken() else {
 throw Error.UnexpectedEndOfInput
 }

 switch token {
 case .Number(let value):
 return value
 case .Plus:
 throw Error.InvalidToken(token)
 }
 }
}
...

The getNumber() method has the signature throws -> Int, so you know it is a function that normally
returns an Int but could throw an error. You use a guard statement to check that there is at least one
more token available. Note that inside the else block of a guard, you can use throw instead of return:
guard just requires that its else block causes the function to stop executing and return to its caller.
After ensuring that you have a token, you use a switch statement to either extract the number’s value
(if the token is a .Number) or throw an InvalidToken error (if it is a .Plus).

From the Library of wu yuan

ptg16315837

Chapter 20 Error Handling

250

Now that you have getNumber(), implementing the rest of the parsing algorithm is straightforward.
Add a parse() method that does just that.

Listing 20.17 Implementing Parser.parse()
...
class Parser {
 ...

 func parse() throws -> Int {
 // Require a number first
 var value = try getNumber()

 while let token = getNextToken() {
 switch token {

 // Getting a Plus after a Number is legal
 case .Plus:
 // After a plus, we must get another number
 let nextNumber = try getNumber()
 value += nextNumber

 // Getting a Number after a Number is not legal
 case .Number:
 throw Error.InvalidToken(token)
 }
 }

 return value
 }
}
...

Your implementation of parse() matches the algorithm outlined above for parsing. The input must
start with a number (the initialization of value). After parsing a number, you enter a loop over the rest
of the tokens. If the next token is .Plus, then you require that the next token is a .Number. Once you
get to the end of the tokens, the while loop ends and you return value.

There is something new here, though. You mark the calls to getNumber() with the try keyword, which
Swift requires because getNumber() is a throwing method. However, you do not use a do / catch
block. Why does Swift allow you to use try outside of a do block?

Swift requires that any call marked with try “handles the error.” It would be easy to assume that
“handling the error” means catching the error, like you did in evaluate(_:). But there is another
perfectly reasonable way to handle an error: throw it again! That is what happens in this case. Because
parse() is itself a throwing method, you are allowed to try calls within it outside of a do / catch. If
any of the try calls fail, the error is “rethrown” out of parse().

From the Library of wu yuan

ptg16315837

Parsing the Token Array

251

Your parser is now complete. Update evaluate(_:) to call the parser and to handle the specific errors
that Parser might throw.

Listing 20.18 Updating evaluate(_:) to use Parser
...
func evaluate(input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")

 let parser = Parser(tokens: tokens)
 let result = try parser.parse()
 print("Parser output: \(result)")
 } catch Lexer.Error.InvalidCharacter(let character) {
 print("Input contained an invalid character: \(character)")
 } catch Parser.Error.UnexpectedEndOfInput {
 print("Unexpected end of input during parsing")
 } catch Parser.Error.InvalidToken(let token) {
 print("Invalid token during parsing: \(token)")
 } catch {
 print("An error occurred: \(error)")
 }
}
...

You should now see your two-phase compiler successfully evaluating the input expression:

Evaluating: 10 + 3 + 5
Lexer output: [Token.Number(10), Token.Plus,
 Token.Number(3), Token.Plus, Token.Number(5)]
Parser output: 18

Try changing the input. Add more or fewer numbers. Try some inputs that will pass your lexer (i.e.,
that only contain legal tokens) but should cause your parser to throw errors. A couple of simple
examples are "10 + 3 5" and "10 + ".

From the Library of wu yuan

ptg16315837

Chapter 20 Error Handling

252

Handling Errors by Sticking Your Head in the Sand
You have seen that every call to a function that might throw an error must be marked with try and that
any call with try must either be inside a do / catch block or inside a function that itself is marked with
throws. These rules work together to make sure you are handling any potential errors. Try modifying
your evaluate(_:) function to break one of these rules.

Listing 20.19 Modifying evaluate(_:) illegally
...
func evaluate(input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)
 let tokens = try lexer.lex()

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")

 let parser = Parser(tokens: tokens)
 let result = try parser.parse()
 print("Parser output: \(result)")
 } catch Lexer.Error.InvalidCharacter(let character) {
 print("Input contained an invalid character: \(character)")
 } catch Parser.Error.UnexpectedEndOfInput {
 print("Unexpected end of input during parsing")
 } catch Parser.Error.InvalidToken(let token) {
 print("Invalid token during parsing: \(token)")
 } catch {
 print("An error occurred: \(error)")
 }
}
...

You moved the try lexer.lex() call outside of the do block, so now the compiler is giving you an
error. The compiler error says that “Errors thrown from here are not handled.” It is possible to tell the
Swift compiler that you do not want to handle potential errors. Change try to try! to see this in action.

Listing 20.20 Using try! in evaluate(_:)
...
func evaluate(input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)
 let tokens = trytry! lexer.lex()

 ...
}
...

From the Library of wu yuan

ptg16315837

Handling Errors by Sticking Your Head in the Sand

253

Your code now compiles, but you should be concerned. What is Swift going to do if an error is thrown
by lexer.lex()? The exclamation mark at the end of the try! keyword should be a big hint. Just like
force-unwrapping an optional, using the forceful keyword try! will cause your program to trap if an
error is thrown.

Earlier, you had a call to evaluate(_:) that caused the lexer to throw an error. Add that call back in
and see what happens.

Listing 20.21 Lexing bad input with try!
...
evaluate("10 + 3 + 5")
evaluate("1 + 2 + abcdefg")

Instead of seeing the invalid token error message, your program now traps on the try! lexer.lex()
line.

We recommended avoiding force-unwrapping optionals and implicitly unwrapped optionals. We even
more strongly recommend avoiding try!. You should only use try! when there is no way for your
program to handle an error and you really do want your program to trap (or crash, if it is running on a
user’s device) if an error occurs.

There is a third variant of try that lets you ignore the error without trapping if an error occurs. You
can call a throwing function with try?, getting a return value that is an optional of whatever type the
function usually returns. This means you need to use something like guard to check that the optional
really contains a value.

Change your trapping try! into a combination of guard and try?.

Listing 20.22 Using try? in evaluate(_:)
...
func evaluate(input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)
 let tokens = try! lexer.lex()
 guard let tokens = try? lexer.lex() else {
 print("Lexing failed, but I don't know why")
 return
 }

 ...
}
...

try? is not as evil as try!, but we still recommend avoiding it most of the time. When you call a
function with try?, you have to handle the possibility of getting back nil. You use a guard to return
from evaluate(_:). However, it is usually better to handle any errors in a catch, because you will
have access to the error that the function threw.

try? will be most useful when you have a meaningful alternative to use when the function you are
calling fails. evaluate(_:) does not have such an alternative, so restore it to its previous error-
handling glory.

From the Library of wu yuan

ptg16315837

Chapter 20 Error Handling

254

Listing 20.23 Restoring evaluate(_:)
...
func evaluate(input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)
 guard let tokens = try? lexer.lex() else {
 print("Lexing failed, but I don't know why")
 return
 }

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")

 let parser = Parser(tokens: tokens)
 let result = try parser.parse()
 print("Parser output: \(result)")
 } catch Lexer.Error.InvalidCharacter(let character) {
 print("Input contained an invalid character: \(character)")
 } catch Parser.Error.UnexpectedEndOfInput {
 print("Unexpected end of input during parsing")
 } catch Parser.Error.InvalidToken(let token) {
 print("Invalid token during parsing: \(token)")
 } catch {
 print("An error occurred: \(error)")
 }
}
...

Swift Error Handling Philosophy
Swift is designed to encourage safe, easy-to-read code, and its error-handling system is no different.
Any function that could fail must be marked with throws. This makes it obvious from the type of a
function whether or not you need to handle potential errors.

Swift also requires you to mark all calls to functions that might fail with try. This gives a great benefit
to anyone reading Swift code. If a function call is annotated with try, you know it is a potential source
of errors that must be handled. If a function call is not annotated with try, you know it will never emit
errors that you need to handle.

If you have used C++ or Java, it is important to note the differences between Swift error handling and
exception-based error handling. Even though Swift uses some of the same terminology, particularly
try, catch, and throw, Swift does not implement error handling using exceptions. When you mark a
function with throws, that effectively changes its return type from whatever type it normally returns to
“either whatever type it normally returns or an instance of ErrorType.”

Finally, there is one other important philosophical error-handling decision built into Swift. A function
that throws does not state what kinds of errors it might throw. This has two practical impacts. First,
you are always free to add more potential ErrorTypes that a function might throw without changing the
API of the function. Second, when you are handling errors with catch, you must always be prepared to
handle an error of some unknown type.

The compiler enforces this second point. Try modifying evaluate(_:) by removing the final catch
block.

From the Library of wu yuan

ptg16315837

Swift Error Handling Philosophy

255

Listing 20.24 Avoid handling unknown ErrorTypes in evaluate(_:)
...
func evaluate(input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")

 let parser = Parser(tokens: tokens)
 let result = try parser.parse()
 print("Parser output: \(result)")
 } catch Lexer.Error.InvalidCharacter(let character) {
 print("Input contained an invalid character: \(character)")
 } catch Parser.Error.UnexpectedEndOfInput {
 print("Unexpected end of input during parsing")
 } catch Parser.Error.InvalidToken(let token) {
 print("Invalid token during parsing: \(token)")
 } catch {
 print("An error occurred: \(error)")
 }
}
...

The compiler is now giving you errors on both lines in the do block where you made try calls. The
error message should sound familiar: “Errors thrown from here are not handled because the enclosing
catch is not exhaustive.” As it does for switch statements, Swift performs exhaustiveness checks on
your do / catch blocks, requiring you to handle any potential ErrorType.

Fix evaluate(_:) by restoring the catch block that will handle any error.

Listing 20.25 Exhaustive error handling in evaluate(_:)
...
func evaluate(input: String) {
 print("Evaluating: \(input)")
 let lexer = Lexer(input: input)

 do {
 let tokens = try lexer.lex()
 print("Lexer output: \(tokens)")

 let parser = Parser(tokens: tokens)
 let result = try parser.parse()
 print("Parser output: \(result)")
 } catch Lexer.Error.InvalidCharacter(let character) {
 print("Input contained an invalid character: \(character)")
 } catch Parser.Error.UnexpectedEndOfInput {
 print("Unexpected end of input during parsing")
 } catch Parser.Error.InvalidToken(let token) {
 print("Invalid token during parsing: \(token)")
 } catch {
 print("An error occurred: \(error)")
 }
}
...

From the Library of wu yuan

ptg16315837

Chapter 20 Error Handling

256

Bronze Challenge
Your expression evaluator currently only supports addition. That is not very useful! Add support for
subtraction. You should be able to call evaluate("10 + 5 - 3 - 1") and see it output 11.

Silver Challenge
The error messages printed out by evaluate(_:) are useful, but not as useful as they could be. Here
are a couple of erroneous inputs and the error messages they produce:

evaluate("1 + 3 + 7a + 8")
> Input contained an invalid character: a

evaluate("10 + 3 3 + 7")
> Invalid token during parsing: .Number(3)

Make these messages more helpful by including the character position where the error occurred. After
completing this challenge, you should see error messages like this:

evaluate("1 + 3 + 7a + 8")
> Input contained an invalid character at index 9: a

evaluate("10 + 3 3 + 7")
> Invalid token during parsing at index 7: 3

Hint: Printing a String.CharacterView.Index will show the character position corresponding to that
index. You will need to associate a String.CharacterView.Index with the error cases. You will also
need to give the parser enough information for it to be able to report the index of a token.

Gold Challenge
Time to step it up a notch. Add support for multiplication and division to your calculator. If you think
this will be as easy as adding subtraction, think again! Your evaluator should give higher precedence to
multiplication and division than it does for addition and subtraction. Here are some sample inputs and
their expected output.

evaluate("10 * 3 + 5 * 3") // Should print 45
evaluate("10 + 3 * 5 + 3") // Should print 28
evaluate("10 + 3 * 5 * 3") // Should print 55

If you get stuck, try researching “recursive descent parsers.” That is the kind of parser you have been
implementing. Here is a hint to get you started: instead of parsing a single number and then expecting
a .Plus or .Minus, try parsing a term computed from numbers and multiplication / division operators,
and then expecting a .Plus or .Minus.

From the Library of wu yuan

ptg16315837

257

21
Extensions

Imagine that you are developing an application that uses a particular type in the Swift standard library
– say the Double type – quite frequently. It would make your development easier if the Double type
supported some additional methods based on how you are using it in your app. Unfortunately, you do
not have Double’s implementation available, so you cannot add functionality directly to it yourself.
What can you do?

Swift provides a feature called extensions that is designed for just these cases. Extensions allow you to
add functionality to an existing type. You can extend structs, enums, and classes.

You can use extensions to extend types with:

• computed properties

• new initializers

• protocol conformance

• new methods

• embedded types

In this chapter you will use extensions to add functionality to an existing type whose definition and
implementation details are not available to you. You will also use extensions to add functionality to a
custom type of your own creation. In both cases you will add functionality to these types in a modular
fashion, meaning that you will group like functionality in a single extension.

Extending an Existing Type
Create a new playground named Extensions.playground. You will be modeling the behavior of a car
in this playground.

Velocity is an important characteristic of any vehicle. Because velocity can have decimal values, it is
reasonable to represent it as a Double.

Given that you will be using the Double type frequently, it would be useful to refer to it in a way that is
contextually relevant. Swift’s typealias keyword provides a way to give another name to an existing
type. Give the Double type an alternate name.

Listing 21.1 Establishing a type alias
typealias Velocity = Double

From the Library of wu yuan

ptg16315837

Chapter 21 Extensions

258

The typealias keyword allows you to define Velocity as an alternative type name for Double. This
interchangeability will help to contextualize Double in the extensions you will write in this chapter by
making it more relevant to your use.

Now that you have a typealias set up, extend the type to support conversion between commonly used
units for speed. Swift’s extensions do not allow you to add stored properties to a type. You will use an
extension to add two computed properties.

Listing 21.2 Extending Velocity to support mph and kph
typealias Velocity = Double
extension Velocity {
 var kph: Velocity { return self * 1.60934 }
 var mph: Velocity { return self }
}

The extension keyword signifies that you are extending the Velocity type. You add two computed
properties to Velocity: kph and mph. These properties on Velocity represent a vehicle’s speed in
kilometers per hour (kph) and miles per hour (mph). Note that the extension treats mph as the default
unit: that computed property simply returns self, while kph performs the conversion.

While the interchangeability provided by a typealias can be a benefit, it can also be a bit tricky. You
may encounter a case in this file where you will want to use the Double type and not the Velocity
type. Because Velocity can be used interchangeably with Double, the extension you defined on
Velocity is also available for the Double type. Adding the extension to Double using the Velocity
typealias gives helpful context. It documents that the computed properties are only meaningful when
used with the Velocity typealias, even though they are available to all Doubles.

Recall that one of the goals of this chapter is to define the behavior of a vehicle. Protocols are one of
Swift’s most helpful features for defining the interface for a type. You can add protocol conformance to
a type with an extension.

Create a new protocol called VehicleType to describe some of the basic characteristics of a vehicle.

Listing 21.3 Adding protocol conformance with an extension
typealias Velocity = Double

extension Velocity {
 var kph: Velocity { return self * 1.60934 }
 var mph: Velocity { return self }
}
protocol VehicleType {
 var topSpeed: Velocity { get }
 var numberOfDoors: Int { get }
 var hasFlatbed: Bool { get }
}

VehicleType declares three properties: topSpeed, numberOfDoors, and hasFlatbed. Each property
only requires the conforming type to implement a getter for the property. A type conforming to this
protocol will be required to provide these properties, which describe some general characteristics of a
vehicle.

From the Library of wu yuan

ptg16315837

Extending Your Own Type

259

Extending Your Own Type
You will need to create a new type before you can add protocol conformance to it through an
extension. Make a new struct to represent a Car type. You will later use an extension on Car to add
conformance to the VehicleType protocol.

Listing 21.4 A Car struct

typealias Velocity = Double

extension Velocity {
 var kph: Velocity { return self * 1.60934 }
 var mph: Velocity { return self }
}

protocol VehicleType {
 var topSpeed: Velocity { get }
 var numberOfDoors: Int { get }
 var hasFlatbed: Bool { get }
}
struct Car {
 let make: String
 let model: String
 let year: Int
 let color: String
 let nickname: String
 var gasLevel: Double {
 willSet {
 precondition(newValue <= 1.0 && newValue >= 0.0,
 "New value must be between 0 and 1.")
 }
 }
}

Here you define a new struct called Car. The Car type defines a number of stored properties that will
be specific to a given instance. All of the properties are constants, with one exception: gasLevel.

gasLevel is a mutable stored property with a property observer on it. The willSet observer will be
called every time you are going to set a new value for gasLevel. You use a precondition() inside of
this implementation to ensure that the newValue being assigned to the gasLevel property is between 0
and 1. These values indicate how full an instance’s gas tank is in terms of percentage points.

Use extensions to add protocol conformance
Extensions can provide a great mechanism to group related chunks of functionality. Grouping
related pieces of functionality in a single extension can help to make your code more readable and
maintainable. This pattern also helps a type keep its interface uncluttered.

Extend the Car type to conform to the VehicleType protocol.

From the Library of wu yuan

ptg16315837

Chapter 21 Extensions

260

Listing 21.5 Extending Car to conform to VehicleType
...
struct Car {
 let make: String
 let model: String
 let year: Int
 let color: String
 let nickname: String
 var gasLevel: Double {
 willSet {
 precondition(newValue <= 1.0 && newValue > 0.0,
 "New value must be between 0 and 1.")
 }
 }
}
extension Car: VehicleType {
 var topSpeed: Velocity { return 180 }
 var numberOfDoors: Int { return 4 }
 var hasFlatbed: Bool { return false }
}

Your new extension extends Car to conform to VehicleType. The syntax for conforming to a protocol
is the same as you have seen before, but this time you use an extension to accomplish this protocol
conformance: extension Car: VehicleType.

You implement the protocol’s required properties inside of the extension’s body. Each property is given
a simple getter. For the sake of convenience, you simply return some default values for each of the
protocol’s properties.

Adding an initializer with an extension
Recall that structs give you a free memberwise initializer if you do not provide your own. If you want
to write a new initializer for your struct, but do not want to lose the memberwise initializer, you can
add the initializer to your type with an extension. Add an initializer to Car in a new extension on the
type.

Listing 21.6 Extending Car with an initializer
...
extension Car: VehicleType {
 var topSpeed: Velocity { return 180 }
 var numberOfDoors: Int { return 4 }
 var hasFlatbed: Bool { return false }
}
extension Car {
 init(carMake: String, carModel: String, carYear: Int) {
 self.init(make: carMake,
 model: carModel,
 year: carYear,
 color: "Black",
 nickname: "N/A",
 gasLevel: 1.0)
 }
}

The new extension on the Car type adds an initializer that accepts arguments only for an instance’s
make, model, and year. This new initializer’s arguments are passed into the free memberwise initializer

From the Library of wu yuan

ptg16315837

Nested types and extensions

261

on the Car struct, and you also provide default values for the missing arguments. The combination of
these two initializers ensures that an instance of the Car type will have values for all of its properties.

The memberwise initializer is preserved on Car because the new initializer is defined and implemented
on an extension. This pattern can be quite helpful.

To see the new initializer defined in the extension work, create an instance of Car.

Listing 21.7 An instance of Car
...
extension Car {
 init(carMake: String, carModel: String, carYear: Int) {
 self.init(make: carMake,
 model: carModel,
 year: carYear,
 color: "Black",
 nickname: "N/A",
 gasLevel: 1.0)
 }
}
var c = Car(carMake: "Ford", carModel: "Fusion", carYear: 2013)

The code above creates a new instance c. This instance is created with the initializer defined in an
extension on Car. Take a look in the results sidebar. You should see that c’s properties have the values
you gave to the new initializer. The default values you gave to the memberwise initializer should be
visible as well.

Nested types and extensions
Swift’s extensions can also add nested types to an existing type. Say, for example, that you want to add
an enumeration to your Car struct to help classify the kind of car an instance might be. Create a new
extension on the Car type to add a nested type.

Listing 21.8 Creating an extension with a nested type
...
var c = Car(carMake: "Ford", carModel: "Fusion", carYear: 2013)
extension Car {
 enum CarKind: CustomStringConvertible {
 case Coupe, Sedan
 var description: String {
 switch self {
 case .Coupe:
 return "Coupe"

 case .Sedan:
 return "Sedan"
 }
 }
 }
 var kind: CarKind {
 if numberOfDoors == 2 {
 return .Coupe
 } else {
 return .Sedan
 }
 }
}

From the Library of wu yuan

ptg16315837

Chapter 21 Extensions

262

This new extension on Car adds a nested type called CarKind. CarKind is an enumeration that
has two cases: one for a Coupe and one for a Sedan. The extension also adds a computed property
on Car called kind, which will represent the kind of car. The nested type also conforms to the
CustomStringConvertible protocol to facilitate logging information.

kind returns values of the nested enumeration based on how many doors the instance has: if the
instance has two doors, then it is a coupe; otherwise, it is a sedan.

Exercise the new nested type in the extension by accessing the computed property kind on the instance
you created before.

Listing 21.9 Accessing kind
...
extension Car {
 enum CarKind: CustomStringConvertible {
 case Coupe, Sedan
 var description: String {
 switch self {
 case .Coupe:
 return "Coupe"

 case .Sedan:
 return "Sedan"
 }
 }
 }
 var kind: CarKind {
 if numberOfDoors == 2 {
 return .Coupe
 } else {
 return .Sedan
 }
 }
}
c.kind.description

You should see "Sedan" logged to the results sidebar.

From the Library of wu yuan

ptg16315837

Extensions with functions

263

Extensions with functions
You can use an extension to give an existing type a function. For example, you may have noticed that
Car does not have a function to fill its gas. Make an extension to add this functionality to Car.

Listing 21.10 Using an extension to add functions
...
c.kind.description
extension Car {
 mutating func emptyGas(amount: Double) {
 precondition(amount <= 1 && amount > 0,
 "Amount to remove must be between 0 and 1.")
 gasLevel -= amount
 }

 mutating func fillGas() {
 gasLevel = 1.0
 }
}

Your new extension adds two functions to the Car type: emptyGas() and fillGas(). Note that both
functions are marked with the mutating keyword. Why? Remember that the Car type is a struct. If a
function wants to change the value of any of the struct’s properties, then it must be declared with the
mutating keyword.

The emptyGas() function takes one argument: the amount of gas to remove from the tank. You use a
precondition inside of the emptyGas() function to ensure that the amount removed from the tank is
between 0 and 1. The implementation of the fillGas() function simply sets the gasLevel property on
the Car to be full, or 1.0.

Exercise these new functions on your existing type.

Listing 21.11 Lowering and filling the gas tank
extension Car {
 mutating func emptyGas(amount: Double) {
 precondition(amount <= 1 && amount > 0,
 "Amount to remove must be between 0 and 1.")
 gasLevel -= amount
 }

 mutating func fillGas() {
 gasLevel = 1.0
 }
}
c.emptyGas(0.3)
c.gasLevel
c.fillGas()
c.gasLevel

After you use the emptyGas() function, you should see that the gas level is 0.7 in the sidebar. After
you fill the gas level, you see that the gas level is now 1.0.

From the Library of wu yuan

ptg16315837

Chapter 21 Extensions

264

Bronze Challenge
Extend the Int type to have a timesFive computed property. The computed property should return the
result of multiplying the integer by 5. You should be able to use it like so:

5.timesFive // 25

Bronze Challenge
Sometimes you write code that looks and feels right at the time, but in using it later find that something
is not quite right. This is the case with the extension you used to make Car conform to VehicleType.

When you made Car conform to the VehicleType protocol, you added a numberOfDoors computed
property that always returns 4. This effectively makes numberOfDoors a constant on Car. As a
consequence, the if/else condition in kind will always return .Sedan. There is no other possibility due
to how Car conforms to VehicleType.

Refactor Car to have a constant stored property named numberOfDoors. Note: this change will mean
that you need to make other changes. Use the new compiler errors to guide your solution.

Silver Challenge
The emptyGas() method has some bugs. For example, if the current gasLevel is less than the amount
to remove, then the new value for this property will be negative. A negative value does not make sense,
and will actually stop the program from running (recall the precondition() in gasLevel’s property
observer). Revise emptyGas()’s implementation to ensure that gasLevel is not decremented to be a
negative value.

From the Library of wu yuan

ptg16315837

265

22
Generics

So far, all the properties and functions you have written have worked on concrete types like Int,
String, and Monster. You may have noticed, however, that Swift allows you to create arrays that
contain any type at all. You can create arrays of built-in Swift types, like [Int] and [Double], as well
as arrays of types you create, like [Monster] and [Person]. How is Array implemented? How can
you write code that can work with a variety of types in the same way? The answer to both of these
questions is “generics.”

Swift generics allow you to write types and functions that make use of types that are not yet known
to you or the compiler. Many of the built-in types you have used throughout this book, including
optionals, arrays, and dictionaries, are implemented using generics. In this chapter, you will investigate
how to write generic types (much like an array). You will also see how you can use generics to write
flexible functions and how generics are related to protocols.

Generic Data Structures
You are going to create a generic stack, which is a venerable data structure in computer science. A
stack is a last-in, first-out (LIFO) data structure. It supports two basic operations. You can push an item
onto the stack, which adds the item to the stack, and you can pop to remove the most recently pushed
item off of the stack.

To begin, create a new playground called Generics.playground and make a Stack structure that only
stores integers.

Listing 22.1 Setting up a Stack
struct Stack {
 var items = [Int]()

 mutating func push(newItem: Int) {
 items.append(newItem)
 }

 mutating func pop() -> Int? {
 guard !items.isEmpty else {
 return nil
 }
 return items.removeLast()
 }
}

From the Library of wu yuan

ptg16315837

Chapter 22 Generics

266

This struct has three elements of interest. The items stored property is an array you are using to
hold on to the items currently in a stack. The push(_:) method pushes a new item onto the stack by
appending it to the end of the items array. Finally, the pop() method pops the top item off of the stack
by calling the removeLast() method of an array, which simultaneously removes the last item and
returns it. Note that pop() returns an optional Int because the stack might be empty (in which case
there is nothing to pop).

Create a Stack instance to see it in action.

Listing 22.2 Creating an instance of Stack
...
var intStack = Stack()
intStack.push(1)
intStack.push(2)

print(intStack.pop()) // Prints Optional(2)
print(intStack.pop()) // Prints Optional(1)
print(intStack.pop()) // Prints nil

You create a new Stack instance, push two values on, then try to pop three values off. As expected, the
pop calls return the integers you pushed in reverse order, and pop returns nil when the stack no longer
has any items left.

Now, modify Stack to be a generic data structure that can hold any type, not just Int:

Listing 22.3 Making Stack generic
struct Stack<Element> {
 var items = [Int]()[Element]()

 mutating func push(newItem: IntElement) {
 items.append(newItem)
 }

 mutating func pop() -> Int?Element? {
 guard !items.isEmpty else {
 return nil
 }
 return items.removeLast()
 }
}
...

You add a placeholder type, named Element, to the declaration of Stack. Swift’s syntax for declaring
a generic uses angle brackets (<>) and immediately follows the name of the type. The name between
the angle brackets represents the placeholder type: <Element>. The placeholder type Element can be
used inside the Stack structure anywhere a concrete type could be used. You can see this usage as you
replaced all of the occurrences of Int with Element, including in a property declaration, the type of the
argument in push(_:), and the type of the return value of pop().

From the Library of wu yuan

ptg16315837

Generic Functions and Methods

267

There is now a compiler error where you create a Stack because you have not specified what type
should be substituted for the placeholder type Element. The process of the compiler substituting a
concrete type for a placeholder is called specialization. Fix the error by specifying that intStack
should be an instance of Stack specialized for Int. You will use the same angle bracket syntax to do
this.

Listing 22.4 Specializing intStack
...
var intStack = Stack<Int>()
...

This resolves the compiler error.

You can now create Stacks of any kind of type. Create a Stack of Strings.

Listing 22.5 Creating a Stack of strings
...
print(intStack.pop()) // Prints Optional(1)
print(intStack.pop()) // Prints nil

var stringStack = Stack<String>()
stringStack.push("this is a string")
stringStack.push("another string")

print(stringStack.pop()) // Prints Optional("another string")

It is important to note that even though intStack and stringStack are both Stack instances, they do
not have the same type. intStack is a Stack<Int>; it would be a compile-time error to pass anything
other than an Int to intStack.push(_:). Likewise, stringStack is a Stack<String>, which is
distinct from Stack<Int>.

Generic data structures are both common and extremely useful. Classes and enumerations can also be
made generic using the same syntax as you used here for structures. In addition, types are not the only
element of Swift that can be generic. Functions and methods can also be generic.

Generic Functions and Methods
Remember the map(_:) method defined on Array from Chapter 13? map(_:) applies a closure to each
element in the array and returns an array of the results. Given what you just learned about generics, you
can now implement a version of this function yourself. Add the following code to your playground.

Listing 22.6 Your own map function
...
func myMap<T,U>(items: [T], f: (T) -> (U)) -> [U] {
 var result = [U]()
 for item in items {
 result.append(f(item))
 }
 return result
}

From the Library of wu yuan

ptg16315837

Chapter 22 Generics

268

The declaration of myMap(_:f:) may look pretty ugly if you have not been exposed to generics in
other languages. Instead of the concrete types you are familiar with, it just has T and U, and there are
more symbol and punctuation characters than letters! But the only new thing is that it declares two
placeholder types, T and U, not just one. Figure 22.1 shows a breakdown of that line:

Figure 22.1 myMap declaration

myMap(_:f:) can be used the same way map(_:) is used. Create an array of strings, then map it to an
array of their character view’s lengths.

Listing 22.7 Mapping arrays
...
func myMap<T,U>(items: [T], f: (T) -> (U)) -> [U] {
 ...
}

let strings = ["one", "two", "three"]
let stringLengths = myMap(strings) { $0.characters.count }
print(stringLengths) // Prints [3, 3, 5]

The closure passed to myMap(_:f:) must take a single argument that matches the type contained in the
items array, but the type of its return value can be anything. In this call to myMap(_:f:), T is replaced
by String and U is replaced by Int. (Note that in real projects there is no need to declare your own
mapping function – just use the built-in map(_:).)

From the Library of wu yuan

ptg16315837

Generic Functions and Methods

269

Methods can also be generic, even inside of types that are already themselves generic. The
myMap(_:f:) function you wrote only works on arrays, but it seems reasonable to want to map a Stack.
Create a map(_:) method on Stack.

Listing 22.8 Mapping on a Stack
struct Stack<Element> {
 var items = [Element]()

 mutating func push(newItem: Element) {
 items.append(newItem)
 }

 mutating func pop() -> Element? {
 guard !items.isEmpty else {
 return nil
 }
 return items.removeLast()
 }

 func map<U>(f: Element -> U) -> Stack<U> {
 var mappedItems = [U]()
 for item in items {
 mappedItems.append(f(item))
 }
 return Stack<U>(items: mappedItems)
 }
}
...

The map(_:) method only declares one placeholder type, U, but it uses both Element and U. The
Element type is available because map(_:) is inside of the Stack structure, which makes the
placeholder type Element available. The body of map(_:) is almost identical to myMap(_:f:), differing
only in that it returns a new Stack instead of an array. Try out your new method:

Listing 22.9 Using map
...
var intStack = Stack<Int>()
intStack.push(1)
intStack.push(2)
var doubledStack = intStack.map({ 2 * $0 })

print(intStack.pop()) // Prints Optional(2)
print(intStack.pop()) // Prints Optional(1)
print(intStack.pop()) // Prints nil

print(doubledStack.pop()) // Prints Optional(4)
print(doubledStack.pop()) // Prints Optional(2)

From the Library of wu yuan

ptg16315837

Chapter 22 Generics

270

Type Constraints
One of the most important things to keep in mind when writing generic functions and data types is
that, by default, you do not know anything about the concrete type that is going to be used. You created
stacks of Int and String, but you could also create stacks of any other type at all. The practical impact
of this lack of knowledge is that there is very little you can do with the value of a placeholder type. For
example, you cannot check if two of them are equal; this code would not compile:

func checkIfEqual<T>(first: T, _ second: T) -> Bool {
 return first == second
}

This function could be called with any type at all, including types for which equality does not make
sense, such as closures. (It is hard to describe what it would mean for two closures to be “equal.” Swift
does not allow the comparison.)

Generic functions would be relatively uncommon if you were never able to assume anything about
the placeholder types. To solve this problem, Swift allows the use of type constraints, which place
restrictions on the concrete types that can be passed to generic functions. There are two kinds of type
constraints: a constraint that a type be a subclass of a given class, or a constraint that a type conform
to a protocol (or a protocol composition). The Equatable protocol is a Swift-provided protocol that
states that two values can be checked for equality. To see how this works, write a checkIfEqual(_:_:)
function including a constraint that T must be Equatable.

Listing 22.10 Using a type constraint to allow checking for equality
...
func checkIfEqual<T: Equatable>(first: T, _ second: T) -> Bool {
 return first == second
}

print(checkIfEqual(1, 1))
print(checkIfEqual("a string", "a string"))
print(checkIfEqual("a string", "a different string"))

Every placeholder type can have a type constraint. For example, write a function that checks if two
CustomStringConvertible values have the same description.

Listing 22.11 Using a type constraint to check CustomStringConvertible
values
...
func checkIfDescriptionsMatch<T: CustomStringConvertible, U: CustomStringConvertible>(
 first: T, _ second: U) -> Bool {
 return first.description == second.description
}

print(checkIfDescriptionsMatch(Int(1), UInt(1)))
print(checkIfDescriptionsMatch(1, 1.0))
print(checkIfDescriptionsMatch(Float(1.0), Double(1.0)))

The constraint that both T and U are CustomStringConvertible guarantees that both first and second
have a property named description that returns a String. Even though the two arguments may have
different types, you can still compare their descriptions.

From the Library of wu yuan

ptg16315837

Associated Type Protocols

271

Associated Type Protocols
Now that you know that types, functions, and methods can be made generic, it is natural to ask whether
protocols can be made generic as well. The answer is “no.” However, protocols support a similar and
related feature: associated types.

Let’s explore protocols with associated types by examining a couple of protocols defined by the Swift
standard library. First, the GeneratorType protocol:

protocol GeneratorType {
 typealias Element

 mutating func next() -> Element?
}

The GeneratorType protocol requires a single mutating method, next(), which returns a value of type
Element?. The purpose of GeneratorType is that you can call next repeatedly and it generates new
values each time. If the generator is no longer able to generate new values, next returns nil. The new
syntax present in this protocol is typealias Element.

You saw the typealias keyword in Chapter 21. In its typical use, typealias allows you to give
another name to an existing type. Inside a protocol, however, you can create a typealias without
specifying the existing type. A type that conforms to GeneratorType must provide an associated,
concrete type to be used as the Element type. At the top of your playground, create a new struct called
StackGenerator that conforms to GeneratorType.

Listing 22.12 Creating StackGenerator
struct StackGenerator<T>: GeneratorType {
 typealias Element = T

 var stack: Stack<T>

 mutating func next() -> Element? {
 return stack.pop()
 }
}

struct Stack<Element> {
 ...
}

StackGenerator wraps up a Stack and generates values by popping items off of the stack. The type of
the Element that next returns is T, so you set the typealias appropriately. Create a new stack, add some
items, then create a generator and loop over its values to see StackGenerator in action.

Listing 22.13 Using StackGenerator
...
var myStack = Stack<Int>()
myStack.push(10)
myStack.push(20)
myStack.push(30)

var myStackGenerator = StackGenerator(stack: myStack)
while let value = myStackGenerator.next() {
 print("got \(value)")
}

From the Library of wu yuan

ptg16315837

Chapter 22 Generics

272

StackGenerator is a little more verbose than it needs to be. Swift can infer the type of a protocol’s
associated types, so you can remove the explicit typealias by indicating that next returns a T?.

Listing 22.14 Tightening up StackGenerator

struct StackGenerator<T>: GeneratorType {
 typealias Element = T

 var stack: Stack<T>

 mutating func next() -> Element? T? {
 return stack.pop()
 }
}
...

The next associated type protocol you will examine is SequenceType. The definition of SequenceType
is:

protocol SequenceType {
 typealias Generator: GeneratorType
 func generate() -> Generator
}

SequenceType has an associated type named Generator. The : GeneratorType syntax is a type
constraint on the associated type. It has the same meaning as type constraints on generics: for a
type to conform to SequenceType, it must have an associated type Generator that conforms to the
protocol GeneratorType. SequenceType also requires conforming types to implement a single method,
generate(), which returns a value of the associated type GeneratorType. Because you already have a
suitable generator for stacks, modify Stack to conform to SequenceType.

From the Library of wu yuan

ptg16315837

Associated Type Protocols

273

Listing 22.15 Making Stack conform to SequenceType
...
struct Stack<Element>: SequenceType {
 var items = [Element]()

 mutating func push(newItem: Element) {
 items.append(newItem)
 }

 mutating func pop() -> Element? {
 guard !items.isEmpty else {
 return nil
 }
 return items.removeLast()
 }

 func map<U>(f: Element -> U) -> Stack<U> {
 var mappedItems = [U]()
 for item in items {
 mappedItems.append(f(item))
 }
 return Stack<U>(items: mappedItems)
 }

 func generate() -> StackGenerator<Element> {
 return StackGenerator(stack: self)
 }
}
...

You again make use of Swift’s type inference to avoid having to explicitly state typealias Generator
= StackGenerator<Element>, although it would not be an error to do so.

The SequenceType protocol is what Swift uses internally for its for ... in loops. Now that Stack
conforms to SequenceType, you can loop over its contents.

Listing 22.16 Looping through myStack
...
var myStackGenerator = StackGenerator(stack: myStack)
while let value = myStackGenerator.next() {
 print("got \(value)")
}

for value in myStack {
 print("for-in loop: got \(value)")
}

StackGenerator pops values off of its stack every time next() is called, which is a fairly destructive
operation. When a StackGenerator returns nil from next(), its stack property is empty. However, you
were able to create a generator by hand from myStack, and then use myStack again in a for ... in
loop. This reuse is possible because Stack is a value type, which means every time a StackGenerator
is created, it gets a copy of the stack, leaving the original untouched.

From the Library of wu yuan

ptg16315837

Chapter 22 Generics

274

A final note: if a protocol has an associated type, you cannot use that protocol as a concrete type.
For example, you cannot declare a variable with the type GeneratorType or declare a function that
accepts an argument of type GeneratorType, because GeneratorType has an associated type. However,
protocols with associated types are fundamental to using where clauses in generic declarations.

Type Constraint where Clauses
Write a new function that takes every element of an array and pushes it onto a stack.

Listing 22.17 Pushing items from an array onto a stack
...
func pushItemsOntoStack<Element>(inout stack: Stack<Element>,
 fromArray array: [Element]) {
 for item in array {
 stack.push(item)
 }
}

pushItemsOntoStack(&myStack, fromArray: [1, 2, 3])
for value in myStack {
 print("after pushing: got \(value)")
}

pushItemsOntoStack(_:fromArray:) takes its first argument, a Stack, as an inout argument so that
it can call the mutating method push(_:). This function is useful, but it is not as general as it could be.
You now know that any type that conforms to SequenceType can be used in a for ... in loop, so why
should this function require an array? It should be able to accept any kind of sequence – even another
Stack, now that Stack conforms to SequenceType.

However, a first attempt at this will produce a compiler error.

Listing 22.18 Close, but no cigar
...
func pushItemsOntoStack<Element>(inout stack: Stack<Element>,
 fromArray array: [Element]) {
func pushItemsOntoStack<Element, S: SequenceType>(
 inout stack: Stack<Element>, fromSequence sequence: S) {
 for item in array sequence {
 stack.push(item)
 }
}

pushItemsOntoStack(&myStack, fromArrayfromSequence: [1, 2, 3])
for value in myStack {
 print("after pushing: got \(value)")
}

You made pushItemsOntoStack(_:fromArray:) generic with two placeholder types: Element, which
is the type of the stack’s elements, and S, which is some type that conforms to the SequenceType
protocol. The constraint on S guarantees that you can loop over it with the for ... in syntax.
However, this is not sufficient. In order to push the items you get from sequence onto the stack,
you need to guarantee that the type of the items coming from the sequence matches the type of the

From the Library of wu yuan

ptg16315837

Type Constraint where Clauses

275

stack’s elements. That is, you need to add an additional constraint that the elements produced by S are
themselves of type Element.

Swift supports constraints of this kind using a where clause.

Listing 22.19 Using a where clause to guarantee type
...
func pushItemsOntoStack<Element, S: SequenceType
 where S.Generator.Element == Element>
 (inout stack: Stack<Element>, fromSequence sequence: S) {
 for item in sequence {
 stack.push(item)
 }
}
...

pushItemsOntoStack(_:fromSequence:) is a generic function with two placeholder types. The first
placeholder type, Element, has no constraints – it can be anything. The second placeholder type, S, has
a constraint that the concrete type used must conform to the SequenceType protocol.

Following the placeholder types, the where clause imposes further restrictions. S.Generator.Element
refers to the Element type associated to the Generator type associated to S. The constraint
S.Generator.Element == Element requires that the concrete type used for the Element associated
type must match the concrete type used for your Element placeholder.

The syntax for generic where clauses can be difficult to read at first glance, but an
example should make it clearer. If you pass a stack of Ints as the first argument to
pushItemsOntoStack(_:fromSequence:), the second argument must be a sequence that produces
Ints. Two types you already know that are Int-producing sequences are Stack<Int> and [Int]. Try
them out:

Listing 22.20 Pushing items to the stack
...
var myOtherStack = Stack<Int>()
pushItemsOntoStack(&myOtherStack, fromSequence: [1, 2, 3])
pushItemsOntoStack(&myStack, fromSequence: myOtherStack)
for value in myStack {
 print("after pushing items onto stack, got \(value)")
}

You created a new, empty stack of integers: myOtherStack. Next, you pushed all the integers from an
array onto myOtherStack. Finally, you pushed all the integers from myOtherStack onto myStack. You
were able to use the same generic function in both cases because arrays and stacks both conform to
SequenceType.

Generics are an extremely powerful feature of Swift. If generics have not sunk in, do not fret – they
are a simultaneously complex and abstract concept. Take your time, go back over the Stack class you
wrote throughout this chapter, and try your hand at the challenges.

From the Library of wu yuan

ptg16315837

Chapter 22 Generics

276

Bronze Challenge
Add a filter(_:) method to your Stack structure. It should take a single argument, a closure that
takes an Element and returns a Bool, and return a new Stack<Element> that contains any elements for
which the closure returns true.

Silver Challenge
Write a generic function called findAll(_:_:) that takes an array of any type T that conforms to
the Equatable protocol and a single element (also of type T). findAll(_:_:) should return an array
of integers corresponding to every location where the element was found in the array. For example,
findAll([5,3,7,3,9], 3) should return [1,3] because the item 3 exists at indices 1 and 3 in the
array. Try your function with both integers and strings.

Gold Challenge
Modify the findAll(_:_:) function you wrote for the silver challenge to accept a generic
CollectionType instead of an array. Hint: you will need to change the return type from [Int] to an
array of an associated type of the CollectionType protocol.

For the More Curious: Understanding Optionals
Optionals are a mainstay of all nontrivial Swift programs, and the language has a lot of features that
make it relatively easy to work with them. Under the hood, however, there is nothing particularly
special about the Optional type. It is a generic enum with two cases:

enum Optional<T> {
 case None
 case Some(T)
}

As you probably expect, the None case corresponds to an optional that is currently nil, and the Some
case corresponds to an optional that has a value of type T. Because the Some case is generic, you are
able to create optional versions of any type at all.

Most of your interactions with optionals will make use of optional binding and optional chaining, but
you can also treat them like any other enumeration. For example, if maybeAnInt is an Int?, you could
switch over its two cases:

switch maybeAnInt {
case .None:
 print("maybeAnInt is nil")

case let .Some(value):
 print("maybeAnInt has the value \(value)")
}

This is not usually necessary, but it is nice to know that optionals are not magic. They are built on top
of the same Swift features that are available to you.

From the Library of wu yuan

ptg16315837

For the More Curious: Parametric Polymorphism

277

For the More Curious: Parametric Polymorphism
In Chapter 15, you learned about class inheritance. Any function that expects an argument of a class
can also accept arguments that are subclasses of that class. This ability to accept either a class or
any subclass of it is often referred to as polymorphism, but is more accurately known as runtime
polymorphism or subclass polymorphism. Polymorphism, meaning “many forms,” means you have
written a single function that can accept different types.

Runtime polymorphism is a very powerful tool, and the frameworks Apple provides for iOS and
Mac OS X development use it very frequently. Unfortunately, it has drawbacks. Classes that are related
by inheritance are tied together tightly: it can be difficult to change one without affecting the others.
There is also a small but observable performance penalty to runtime polymorphism due to how the
compiler must implement functions that accept class arguments.

Swift’s ability to add constraints to generics allows you to use another form of polymorphism: compile-
time polymorphism, also known as parametric polymorphism. Generic functions with constraints
are still true to the definition of polymorphism: you can write a single function that accepts different
types. Compile-time polymorphic functions address both of the issues listed above that plague runtime
polymorphism. Many different types can conform to a protocol, allowing them to be used in any
generic function that requires a type conforming to that protocol – but the types can be otherwise
unrelated, making it easy to change any one of them without affecting the others. Additionally,
compile-time polymorphism generally does not have a performance penalty. In the playground, you
called pushItemsOntoStack once with an array and once with a stack. The compiler actually produced
two different versions of pushItemsOntoStack in the executable, meaning the function itself does not
have to do anything at runtime to handle the different argument types.

Swift is entering into a programming community that has traditionally used class inheritance and
runtime polymorphism extensively. Generics and compile-time polymorphism are starting to play a
large role, however. The next time you start to write a class hierarchy, consider whether the problem
you are trying to solve might be better served with a solution featuring protocols and generics.
Chapter 23 will discuss even more tools for protocol-based designs.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

279

23
Protocol Extensions

The dominant software design philosophy of the past few decades has been object-oriented
programming (OOP). OOP is powerful and well known; people have an intuition for what this style
means for code. Traditionally, OOP uses classes to model data and methods to modify the properties
on instances of those classes and to communicate with instances of other classes. Swift supports OOP,
though its approach is often not idiomatic in that enums and structs can replace many typical uses of
classes in OOP.

Swift also addresses some of OOP’s flaws. In OOP, inheritance, in particular, has to be used with
great care. It is easy to end up with a code base full of difficult-to-understand classes due to a deep
inheritance hierarchy. Swift introduces a new opportunity for designing reusable and composable
types: instead of using classes and inheritance, you can use protocols and generics. Protocols allow
patterns that solve the same problems inheritance solves in OOP, even when using value types. One of
the most powerful tools to enable this kind of design is the protocol extension.

Modeling Exercise
Before you can begin exploring protocol extensions, you need a protocol and some conforming types
to experiment with. You will write some very basic code that will let you track exercises.

Create a new playground called ProtocolExtensions.playground. Begin with an ExerciseType
protocol.

Listing 23.1 The ExerciseType protocol
import Cocoa

protocol ExerciseType {
 var name: String { get }
 var caloriesBurned: Double { get }
 var minutes: Double { get }
}

The ExerciseType protocol has three readable properties for the exercise’s name, the number of
calories burned, and the minutes spent performing the exercise. You are following the convention set
by the Swift standard library, where protocol names end with one of the suffixes “-Type,” “-able,”
or “-ible.” You have already seen several other protocols that follow this convention, including
SequenceType, GeneratorType, and CustomStringConvertible. You use the -Type suffix because the
ExerciseType protocol defines the behavior of a type, as opposed to a protocol that defines how an
element is able to do something.

From the Library of wu yuan

ptg16315837

Chapter 23 Protocol Extensions

280

Create two structs to track workouts: one for using an elliptical trainer and a second for running.

Listing 23.2 EllipticalTrainer and Treadmill exercises
protocol ExerciseType {
 var name: String { get }
 var caloriesBurned: Double { get }
 var minutes: Double { get }
}

struct EllipticalTrainer: ExerciseType {
 let name = "Elliptical Machine"
 let caloriesBurned: Double
 let minutes: Double
}

struct Treadmill: ExerciseType {
 let name = "Treadmill"
 let caloriesBurned: Double
 let minutes: Double
 let distanceInMiles: Double
}

You define two new structs that both conform to ExerciseType. Each has a name that is constant
for all instances. Each has caloriesBurned and minutes properties which will be set when the
instance is created. Treadmill also has a distanceInMiles property to keep track of how far you ran.
distanceInMiles is not required to conform to ExerciseType, but recall from Chapter 19 that extra
properties or methods are perfectly acceptable.

Create an instance of each of these new types.

Listing 23.3 Instances of EllipticalTrainer and Treadmill
...
struct EllipticalTrainer: ExerciseType {
 let name = "Elliptical Machine"
 let caloriesBurned: Double
 let minutes: Double
}

let ellipticalWorkout = EllipticalTrainer(caloriesBurned: 335, minutes: 30)

struct Treadmill: ExerciseType {
 let name = "Treadmill"
 let caloriesBurned: Double
 let minutes: Double
 let distanceInMiles: Double
}

let runningWorkout = Treadmill(caloriesBurned: 350, minutes: 25, distanceInMiles: 4.2)

From the Library of wu yuan

ptg16315837

Extending ExerciseType

281

Extending ExerciseType
A natural question to ask about an instance of ExerciseType is how many calories were burned per
minute of exercise. You can use your knowledge of generics and where clauses to write a function that
will perform that calculation.

Listing 23.4 Computing calories burned per minute, generically
...

func caloriesBurnedPerMinute<Exercise: ExerciseType>(exercise: Exercise) -> Double {
 return exercise.caloriesBurned / exercise.minutes
}

print(caloriesBurnedPerMinute(ellipticalWorkout))
print(caloriesBurnedPerMinute(runningWorkout))

caloriesBurnedPerMinute(_:) is a generic function whose placeholder type is required to be a type
that conforms to the ExerciseType protocol. The body of the function uses two of ExerciseType’s
properties to compute the calories burned per minute.

There is nothing wrong with caloriesBurnedPerMinute(_:), per se. But if you have an instance of
ExerciseType, you have to remember that the caloriesBurnedPerMinute(_:) function exists. It
would be more natural if every ExerciseType had a caloriesBurnedPerMinute property – but you
do not want to have to copy and paste the same implementation into both EllipticalTrainer and
Treadmill (and any new ExerciseTypes you might create).

Instead, write an extension on the ExerciseType protocol to add this new property.

Listing 23.5 Adding caloriesBurnedPerMinute to ExerciseType
...
func caloriesBurnedPerMinute<Exercise: ExerciseType>(exercise: Exercise) -> Double {
 return exercise.caloriesBurned / exercise.minutes
}
extension ExerciseType {
 var caloriesBurnedPerMinute: Double {
 return caloriesBurned / minutes
 }
}
...

Protocol extensions use the same extension keyword as extensions on nonprotocol types. Protocol
extensions can add new properties and methods that have implementations, but they cannot add
new requirements to the protocol. Much like the restrictions when you wrote generic functions, the
implementations inside a protocol extension can only access other properties and methods that are
guaranteed to exist, as caloriesBurned and minutes are in this case. Properties and methods added in
a protocol extension become available on all types that conform to the protocol.

From the Library of wu yuan

ptg16315837

Chapter 23 Protocol Extensions

282

You deleted the caloriesBurnedPerMinute(_:) function, so your playground is now showing an error.
Replace the call to this function with an access of the new caloriesBurnedPerMinute property.

Listing 23.6 Accessing caloriesBurnedPerMinute
...
print(caloriesBurnedPerMinute(ellipticalWorkout))
print(caloriesBurnedPerMinute(runningWorkout))
print(ellipticalWorkout.caloriesBurnedPerMinute)
print(runningWorkout.caloriesBurnedPerMinute)

The results are the same.

Protocol Extension where Clauses
Extensions allow you to add new methods and properties to any type, not just types you have defined.
Likewise, protocol extensions allow you to add new methods and properties to any protocol. However,
as we said earlier, the properties and methods you add in a protocol extension can only make use of
other properties and methods that are guaranteed to exist.

Do you remember the built-in protocol SequenceType from Chapter 22? It has a typealias named
Generator, which must itself conform to GeneratorType. And GeneratorType has a typealias
named Element that indicates the type of elements produced by the generator. When writing a protocol
extension on SequenceType, there are not very many properties and methods that would be useful. You
can use a where clause to restrict the protocol extension to only SequenceTypes whose Element is a
particular type.

Write a protocol extension on SequenceType that contains elements that are of type ExerciseType.

Listing 23.7 Extending SequenceTypes containing ExerciseTypes
...

extension SequenceType where Generator.Element == ExerciseType {
 func totalCaloriesBurned() -> Double {
 var total: Double = 0
 for exercise in self {
 total += exercise.caloriesBurned
 }
 return total
 }
}

The where clause syntax for protocol extensions is the same as the where clause syntax for generics.
You add a totalCaloriesBurned() method to compute the total number of calories burned in all
exercises contained in the sequence. In the implementation, you loop over every exercise in self,
which is allowed because self is some kind of SequenceType. You then access the caloriesBurned
property of each element, which is allowed because the where clause restricts this method to sequences
whose elements are ExerciseType.

From the Library of wu yuan

ptg16315837

Default Implementations with Protocol Extensions

283

Create an array of ExerciseTypes. Array conforms to SequenceType, so you can call your new
totalCaloriesBurned() method.

Listing 23.8 Calling totalCaloriesBurned() on an array of ExerciseTypes
...
extension SequenceType where Generator.Element == ExerciseType {
 func totalCaloriesBurned() -> Double {
 var total: Double = 0
 for exercise in self {
 total += exercise.caloriesBurned
 }
 return total
 }
}

let mondayWorkout: [ExerciseType] = [ellipticalWorkout, runningWorkout]
print(mondayWorkout.totalCaloriesBurned())

The totalCaloriesBurned() method is available on this array because it is of type [ExerciseType],
so you get the result 685.0. If you were to create an array of type [Int], for example, the
totalCaloriesBurned() method would not be available. It would not show up in Xcode’s
autocompletion, and if you were to type it in manually your program would not compile.

Default Implementations with Protocol Extensions
Both of the protocol extensions you have written so far add new properties or methods to protocols.
You can also use protocol extensions to provide default implementations for the protocol’s own
requirements.

Recall from Chapter 19 that the CustomStringConvertible protocol has a single requirement:
a readable String property named description. Change ExerciseType to inherit from
CustomStringConvertible, meaning it also requires the description property.

Listing 23.9 Making ExerciseType inherit from CustomStringConvertible
protocol ExerciseType: CustomStringConvertible {
 var name: String { get }
 var caloriesBurned: Double { get }
 var minutes: Double { get }
}
...

Your playground now has two errors because neither EllipticalTrainer nor Treadmill has the
required description property.

From the Library of wu yuan

ptg16315837

Chapter 23 Protocol Extensions

284

You could go back and modify both types to add a description, but that seems silly when
ExerciseType already has enough properties to provide a reasonable String representation. Use
a protocol extension to add a default implementation of description to all types that conform to
ExerciseType.

Listing 23.10 Adding a default implementation of description to
ExerciseType
protocol ExerciseType: CustomStringConvertible {
 var name: String { get }
 var caloriesBurned: Double { get }
 var minutes: Double { get }
}

extension ExerciseType {
 var description: String {
 return "Exercise(\(name), burned \(caloriesBurned) calories
 in \(minutes) minutes)"
 }
}
...

The playground no longer has any errors. Your extension provides a default implementation of
description, so types that conform to ExerciseType do not have to provide it themselves.

Print out both of your ExerciseType instances.

Listing 23.11 Seeing the default description implementation
...
print(ellipticalWorkout.caloriesBurnedPerMinute)
print(runningWorkout.caloriesBurnedPerMinute)

print(ellipticalWorkout)
print(runningWorkout)
...

Open the debug area of your playground and you should see the following output; it is exactly as you
would expect from your implementation of description.

Exercise(Elliptical Machine, burned 335.0 calories in 30.0 minutes)
Exercise(Treadmill, burned 350.0 calories in 25.0 minutes)

When a protocol provides default implementations for some (or all) of its properties or methods,
conforming types are not required to implement them. But they can choose to implement them if the
default implementation is not suitable.

From the Library of wu yuan

ptg16315837

Default Implementations with Protocol Extensions

285

Your Treadmill type also knows how many miles were run, but that information is not included in
the description. Implement the description property on Treadmill, which will take precedence over
the default implementation supplied by your extension on ExerciseType. Stylistically, it is cleaner to
separate this property from the core functionality of Treadmill by placing it in an extension.

Listing 23.12 Overriding a protocol’s default implementation
...
struct Treadmill: ExerciseType {
 let name = "Treadmill"
 let caloriesBurned: Double
 let minutes: Double
 let distanceInMiles: Double
}

extension Treadmill {
 var description: String {
 return "Treadmill(\(caloriesBurned) calories and
 \(distanceInMiles) miles in \(minutes) minutes)"
 }
}
...

Now that Treadmill implements description itself, you should see in the output that the default
implementation is only used when printing ellipticalWorkout.

Exercise(Elliptical Machine, burned 335.0 calories in 30.0 minutes)
Treadmill(350.0 calories and 4.2 miles in 25.0 minutes)

From the Library of wu yuan

ptg16315837

Chapter 23 Protocol Extensions

286

Naming Things: A Cautionary Tale
There is an edge case with protocol extensions that may prove to be a great source of frustration
if you are not careful. In the previous section, you added description to the requirements of
ExerciseType, added a default implementation, and added a specific implementation to Treadmill
that took precedence over the default implementation. This worked correctly because description was
required by the ExerciseType protocol. What happens, though, if you write a protocol extension to
add a property or method, then add the same property or method (with a different implementation) to a
conforming type?

The answer is that it depends on how the instance is being accessed – does the compiler know its
specific type, or does it only know that it is an instance of the protocol? If this sounds confusing, that is
okay – this is a little confusing! Let’s look at an example.

Use a protocol extension to implement a title property on ExerciseType. Print out the titles of all the
workouts in mondayWorkout.

Listing 23.13 Extending ExerciseType to add a title
...

extension ExerciseType {
 var title: String {
 return "\(name) - \(minutes) minutes"
 }
}

for exercise in mondayWorkout {
 print(exercise.title)
}

You add an implementation of title that includes the ExerciseType’s name and duration. You should
see the following output.

Elliptical Machine - 30.0 minutes
Treadmill - 25.0 minutes

Now go back and implement a title property on EllipticalTrainer. The title of
EllipticalTrainer instances will be the brand name of the elliptical machine used in the workout.

Listing 23.14 Adding a title to EllipticalTrainer
...
struct EllipticalTrainer: ExerciseType {
 let name = "Elliptical Machine"
 let title = "Go Fast Elliptical Machine 3000"
 let caloriesBurned: Double
 let minutes: Double
}
...

Check the output of your for loop.

Elliptical Machine - 30.0 minutes
Treadmill - 25.0 minutes

From the Library of wu yuan

ptg16315837

Naming Things: A Cautionary Tale

287

Nothing changed. To make sure you did not mistype something, try printing out ellipticalWorkout’s
title directly.

Listing 23.15 Printing ellipticalWorkout’s title
...
for exercise in mondayWorkout {
 print(exercise.title)
}

print(ellipticalWorkout.title)

You should see the following output.

Elliptical Machine - 30.0 minutes
Treadmill - 25.0 minutes
Go Fast Elliptical Machine 3000

Yikes! The same value of ellipticalWorkout is giving two different values for title. Why is the
implementation provided by EllipticalTrainer not taking precedence over the implementation in the
extension on ExerciseType? Because title is not required by the ExerciseType protocol.

When the compiler sees ellipticalWorkout.title, it knows ellipticalWorkout is an instance
of EllipticalTrainer, so it uses the title you defined in the struct. Inside the for loop, on the
other hand, the compiler only knows that exercise is an instance of some type that conforms to
ExerciseType. When you access exercise.title, the compiler does not check to see if the underlying
type also provides a title property, because it is not part of the protocol. The compiler jumps straight
to the implementation provided by your extension on ExerciseType.

At the risk of being repetitive, it is okay if this is confusing. Here is what is most important to
understand: be careful when you are considering writing a protocol extension that adds properties or
methods that are not default implementations for requirements of the protocol. The runtime behavior
may not be what you expect if conforming types also implement those same properties and methods.

From the Library of wu yuan

ptg16315837

Chapter 23 Protocol Extensions

288

Bronze Challenge
Clean up the messiness introduced with the title properties. Add title to the ExerciseType protocol
and make sure you see the output you expect.

Gold Challenge
This challenge is unique in that it does not have a specific problem or solution. Instead, it is an
encouragement to spend some time reading interfaces written by the Swift team at Apple.

You first encountered the map(_:) method in Chapter 13, where you called it on arrays. Then in
Chapter 19, you called map(_:) on a range constructed with the ..< operator. Both of these were
actually calling map(_:) methods defined in protocol extensions by the Swift standard library.

The Swift standard library contains a large number of properties and methods provided by protocol
extensions. Many of them also include where clauses that restrict their use based on various criteria.

Remember that you can Command-click on a type, function, method, or even operator to jump to a
view in Xcode that shows you how the element is declared. The Swift standard library makes use of
many of the advanced features you have learned about. It may be difficult to read, especially at first,
and especially if Swift is your first exposure to programming or generics. It is worth investing some
time, though, in looking at how the library is organized. Try Command-clicking on SequenceType in
your playground and skimming through some of the extensions defined there. See if you can figure out
what some of the where clauses mean. Do some experiments and explore!

From the Library of wu yuan

ptg16315837

289

24
Memory Management and ARC

All computer programs use memory. Most computer programs use memory dynamically: as a program
runs, it allocates and deallocates memory as needed. Swift’s stance on memory management is
relatively unique. Most memory issues are handled for you automatically, but Swift does not use a
garbage collector (a common tool for automatic memory management in programming languages).
Instead, Swift uses a system of reference counting. In this chapter, you will investigate how that system
works and learn what you need to be aware of to avoid memory leaks.

Memory Allocation
The memory allocation and management for value types – enumerations and structures – is very
simple. When you create a new instance of a value type, an appropriate amount of memory is
automatically set aside for your instance. Anything you do to pass the instance around, including
passing it to a function and storing it in a property, creates a copy of the instance. Swift reclaims the
memory when the instance no longer exists. You do not have to do anything to manage the memory of
value types.

This chapter is about managing the memory for reference types – specifically, class instances. When
you create a new class instance, memory is allocated for the instance to use, just as it is for value types.
However, the difference is in what happens when you pass the class instance around. Passing a class
instance to a function or storing it in a property creates an additional reference to the same memory,
rather than copying the instance itself. Having multiple references to the same memory means that
when any one of them changes the class instance, that change is apparent to all of the references.

Swift does not require you to manually manage memory, as languages like C do. Instead, every class
instance has a reference count, which is the number of references to the memory making up the class
instance. The instance remains alive as long as the reference count is greater than 0. Once the reference
count becomes 0, the instance is deallocated and your deinit method will run.

In the not-too-distant past, apps that were developed for iOS and Mac OS X in Objective-C used
manual reference counting. Manual reference counting required you, the programmer, to manage
the reference counts of all your class instances. Every class had a method to retain the object
(incrementing its reference count) and a method to release the instance (decrementing its reference
count). As you can probably imagine, manual reference counting was the source of many bugs: if you
retained an instance too many times, it would never get deallocated (causing what is called a memory
leak), but if you released an instance too many times, a crash would usually result.

In 2011, Apple introduced Automatic Reference Counting (ARC) for Objective-C. Under ARC, the
compiler is responsible for analyzing your code and inserting retain and release calls in all of the
appropriate places. Swift is also built on top of ARC. You do not have to do anything to manage the

From the Library of wu yuan

ptg16315837

Chapter 24 Memory Management and ARC

290

reference count of class instances – the compiler does that for you. However, it is still important for
you to understand how the system works. There are some common mistakes that can cause memory
management problems.

Strong Reference Cycles
Create a new command-line tool named CyclicalAssets. Add a new file to your project named
Person.swift and insert the following definition of the Person class.

Listing 24.1 Defining the Person class (Person.swift)
import Foundation

class Person: CustomStringConvertible {
 let name: String

 var description: String {
 return "Person(\(name))"
 }

 init(name: String) {
 self.name = name
 }

 deinit {
 print("\(self) is being deallocated")
 }
}

The Person class has a single property that you set in its initializer. It conforms to the
CustomStringConvertible protocol by implementing the description computed property. You
add an implementation of deinit so you can see when a person is being deallocated – i.e., when its
memory is being reclaimed because the reference count has dropped to 0.

Now, modify main.swift to create an optional Person.

Listing 24.2 Creating an optional Person (main.swift)
import Foundation

print("Hello, world!")
var bob: Person? = Person(name: "Bob")
print("created \(bob)")

bob = nil
print("the bob variable is now \(bob)")

Here, you create a new Person?, print out its name, then set it to nil. (You make this an optional
so that you can set it to nil and therefore see the deinit execute.) Build and run your program. You
should see the following output:

created Optional(Person(Bob))
Person(Bob) is being deallocated
the bob variable is now nil

The bob variable is an optional that contains a class instance – a reference type. By default, all
references that you create are strong references, which means they increment the reference count

From the Library of wu yuan

ptg16315837

Strong Reference Cycles

291

of the instance they refer to. Therefore, the Person whose name is Bob has a reference count of 1
after it is created and assigned to the bob variable. When you set bob to nil, Bob’s reference count is
decremented. You then see the Person Bob is being deallocated message, because the reference
count has dropped to 0.

Next, create a new Swift file called Asset.swift and insert an Asset class.

Listing 24.3 Defining the Asset class (Asset.swift)
import Foundation

class Asset: CustomStringConvertible {
 let name: String
 let value: Double
 var owner: Person?

 var description: String {
 if let actualOwner = owner {
 return "Asset(\(name), worth \(value), owned by \(actualOwner))"
 } else {
 return "Asset(\(name), worth \(value), not owned by anyone)"
 }
 }

 init(name: String, value: Double) {
 self.name = name
 self.value = value
 }

 deinit {
 print("\(self) is being deallocated")
 }
}

The Asset class is very similar to the Person class. Asset has name and value properties, conforms to
CustomStringConvertible, and prints a message when it is deallocated. It also has a variable stored
property, owner, which will refer to the Person who owns the asset. owner is optional because it is
reasonable for an asset to exist without someone owning it.

Create a few assets in main.swift.

Listing 24.4 Creating assets (main.swift)
import Foundation

var bob: Person? = Person(name: "Bob")
print("created \(bob)")

var laptop: Asset? = Asset(name: "Shiny Laptop", value: 1500.0)
var hat: Asset? = Asset(name: "Cowboy Hat", value: 175.0)
var backpack: Asset? = Asset(name: "Blue Backpack", value: 45.0)

bob = nil
print("the bob variable is now \(bob)")

laptop = nil
hat = nil
backpack = nil

From the Library of wu yuan

ptg16315837

Chapter 24 Memory Management and ARC

292

You again use optionals so that you can set the instances to be nil, which fires off the deinit methods.
As expected, all of the assets are deallocated and do not have owners:

created Optional(Person(Bob))
Person(Bob) is being deallocated
the bob variable is now nil
Asset(Shiny Laptop, worth 1500.0, not owned by anyone) is being deallocated
Asset(Cowboy Hat, worth 175.0, not owned by anyone) is being deallocated
Asset(Blue Backpack, worth 45.0, not owned by anyone) is being deallocated

People can own things; your Person class will model this quality by having a property for assets. Go
back to Person.swift and add a property and method for people to gain assets.

Listing 24.5 Letting a Person own assets (Person.swift)
import Foundation

class Person: CustomStringConvertible {
 let name: String
 var assets = [Asset]()

 var description: String {
 return "Person(\(name))"
 }

 init(name: String) {
 self.name = name
 }

 deinit {
 print("\(self) is being deallocated")
 }

 func takeOwnershipOfAsset(asset: Asset) {
 asset.owner = self
 assets.append(asset)
 }
}

You add assets, an array of Assets that the person owns, and takeOwnershipOfAsset(_:), a method
to give an asset to a person. Taking ownership of an asset means the person adds it to their assets
array and sets the asset’s owner property to refer back to this person. In main.swift, give Bob
ownership of a couple of assets.

Listing 24.6 Bob is taking ownership (main.swift)
...
var laptop: Asset? = Asset(name: "Shiny Laptop")
var hat: Asset? = Asset(name: "Cowboy Hat")
var backpack: Asset? = Asset(name: "Blue Backpack")

bob?.takeOwnershipOfAsset(laptop!)
bob?.takeOwnershipOfAsset(hat!)

bob = nil
...

From the Library of wu yuan

ptg16315837

Strong Reference Cycles

293

Build and run again. The output may be surprising:

created Optional(Person(Bob))
the bob variable is now nil
Asset(Blue Backpack, worth 45.0, not owned by anyone) is being deallocated

The only instance being deallocated now is the backpack – its reference count dropped to 0 when you
set backpack = nil. The laptop, hat, and Bob himself are no longer being deallocated. Why not? Take
a look at Figure 24.1, which shows who has a reference to whom before any of the variables are set to
nil in main.swift:

Figure 24.1 CyclicalAssets before

Each instance is labeled with its current reference count. The reference count is exactly the number
of arrows pointing to the instance; i.e., the number of references to the instance. After you set all the
variables in main.swift to nil, those references go away, leaving what you see in Figure 24.2:

Figure 24.2 CyclicalAssets after

You have created two strong reference cycles, which is the term for when two instances have strong
references to each other. Bob has a reference to the laptop (via his assets property), and the laptop has
a reference to Bob (via its owner property). Same for Bob and the hat. The memory for these instances
is no longer reachable – all the variables pointing to them are gone – but the memory will never be
reclaimed because each instance has a reference count greater than 0.

Strong reference cycles are one kind of memory leak. Your application allocated the memory necessary
to store Bob and his two assets, but it did not return that memory to the system even after your program
no longer needed it.

Do not worry about causing problems with your computer: when a program like CyclicalAssets stops
running, all memory (including any leaked memory) is reclaimed by the OS. However, memory leaks
are still serious, especially in iOS. iOS keeps track of how much memory apps use, and it can kill
apps that use too much. When an app leaks memory, that memory still counts as part of the app’s total
memory usage, even though it is no longer needed or useful.

From the Library of wu yuan

ptg16315837

Chapter 24 Memory Management and ARC

294

The solution to a strong reference cycle is to break the cycle. You could break the cycle in Person’s
deinit method by looping over each asset and setting its owner to nil. However, Swift provides
a keyword to get the same effect automatically. Modify Asset to make the owner property a weak
reference instead of a strong reference.

Listing 24.7 Making the owner property a weak reference (Asset.swift)
class Asset: CustomStringConvertible {
 let name: String
 let value: Double
 weak var owner: Person?
 ...
}

A weak reference is a reference that does not increase the reference count of the instance it refers to.
In this case, making owner a weak reference means that when you assign Bob as the owner of the
laptop and the hat, Bob’s reference count does not increase. The only strong reference to Bob is the bob
variable in main.swift.

Now, when you set the bob variable to nil, the reference count on Bob drops to 0, so it is deallocated.
When Bob is deallocated, he no longer holds a strong reference to his assets, so their reference counts
drop to 0 as well. Running your program again confirms that all the objects are deallocated.

created Optional(Person(Bob))
Person(Bob) is being deallocated
the bob variable is now nil
Asset(Shiny Laptop, worth 1500.0, not owned by anyone) is being deallocated
Asset(Cowboy Hat, worth 175.0, not owned by anyone) is being deallocated
Asset(Blue Backpack, worth 45.0, not owned by anyone) is being deallocated

What happens to a weak reference if the instance it is referring to is deallocated? The weak reference is
set to nil. You can see this in action by editing main.swift.

Listing 24.8 Who owns the hat? (main.swift)
...
bob?.takeOwnershipOfAsset(laptop!)
bob?.takeOwnershipOfAsset(hat!)

print("While Bob is alive, hat's owner is \(hat!.owner)")
bob = nil
print("the bob variable is now \(bob)")
print("After Bob is deallocated, hat's owner is \(hat!.owner)")
...

Running your program again demonstrates weak variables in action:

created Optional(Person(Bob))
While Bob is alive, hat's owner is Optional(Person(Bob))
Person(Bob) is being deallocated
the bob variable is now nil
After Bob is deallocated, hat's owner is nil
Asset(Shiny Laptop, worth 1500.0, not owned by anyone) is being deallocated
Asset(Cowboy Hat, worth 175.0, not owned by anyone) is being deallocated
Asset(Blue Backpack, worth 45.0, not owned by anyone) is being deallocated

From the Library of wu yuan

ptg16315837

Reference Cycles in Closures

295

There are two requirements for weak references:

• Weak references must always be declared as var, not let.

• Weak references must always be declared as optional.

Both of these requirements are the result of weak references being changed to nil if the instance they
point to is deallocated. The only types that can become nil are optionals, so weak references must be
optional. And instances declared with let cannot change, so weak references must be declared with
var.

In most cases, strong reference cycles like the one you just resolved are easy to avoid. Person is a class
that owns assets, so it makes sense that it would keep strong references to the assets. Asset is a class
that is owned by a Person. If it wants a reference to its owner, that reference should be weak. After all,
a person owns an asset – an asset does not own a person!

There is another way to create reference cycles that is much more subtle: capturing self in a closure.

Reference Cycles in Closures
Time to add an accountant class that will keep track of a Person’s net worth. Create a new Swift file
called Accountant.swift and define your new class.

Listing 24.9 Defining an Accountant (Accountant.swift)
import Foundation

class Accountant {
 typealias NetWorthChanged = (Double) -> ()

 var netWorthChangedHandler: NetWorthChanged? = nil
 var netWorth: Double = 0.0 {
 didSet {
 netWorthChangedHandler?(netWorth)
 }
 }

 func gainedNewAsset(asset: Asset) {
 netWorth += asset.value
 }
}

Accountant defines a typealias, NetWorthChanged, which is a closure that takes a Double (the new
net worth value) and returns nothing. It has two properties: netWorthChangedHandler, which is an
optional closure to call when the net worth changes, and netWorth, the current net worth of a person.
netWorth has a didSet property observer that calls the netWorthChangedHandler closure if it is non-
nil. Finally, the gainedNewAsset(_:) function should be called to tell the accountant that the value of a
new asset should be added to the net worth value.

From the Library of wu yuan

ptg16315837

Chapter 24 Memory Management and ARC

296

Update Person.swift to have an accountant to track a Person’s net worth.

Listing 24.10 Adding an Accountant to the Person class (Person.swift)
import Foundation

class Person: CustomStringConvertible {
 let name: String
 let acccountant = Accountant()
 var assets = [Asset]()

 var description: String {
 return "Person(\(name))"
 }

 init(name: String) {
 self.name = name

 accountant.netWorthChangedHandler = {
 netWorth in

 self.netWorthDidChange(netWorth)
 return
 }
 }

 deinit {
 print("\(self) is being deallocated")
 }

 func takeOwnershipOfAsset(asset: Asset) {
 asset.owner = self
 assets.append(asset)
 accountant.gainedNewAsset(asset)
 }

 func netWorthDidChange(netWorth: Double) {
 print("The net worth of \(self) is now \(netWorth)")
 }
}

You add an accountant property that has a default value of a new Accountant. Person has
a strong reference to its Accountant, which is perfectly reasonable. In init(), you set the
netWorthChangedHandler on the accountant to call your new netWorthDidChange(_:) method,
which logs the person’s new net worth. Finally, you update takeOwnershipOfAsset(_:) to notify the
accountant of new assets. Build and run your program. You should see the following:

created Optional(Person(Bob))
The net worth of Person(Bob) is now 1500.0
The net worth of Person(Bob) is now 1675.0
While Bob is alive, hat's owner is Optional(Person(Bob))
the bob variable is now nil
After Bob is deallocated, hat's owner is Optional(Person(Bob))
Asset(Blue Backpack, worth 45.0, not owned by anyone) is being deallocated

You get the log messages of the net worth changing, so all of the accountant code you added appears
to be working correctly. However, the memory leak is back: Bob, the laptop, and the hat are not being
deallocated. Why aren’t these instances being removed from memory?

From the Library of wu yuan

ptg16315837

Reference Cycles in Closures

297

Your new code includes a not-so-obvious strong reference cycle. Person has a strong reference to
Accountant, but Accountant does not have a strong reference back to Person, at least at first glance.
To get a hint about what is going on, try modifying the init() method of Person (this will cause a
compiler error).

Listing 24.11 Modifying init() (Person.swift)
...
 init(name: String) {
 self.name = name

 accountant.netWorthChangedHandler = {
 netWorth in

 self.netWorthDidChange(netWorth)
 return
 }
 }

Try to build your program now. The error message you receive states Call to method
'netWorthDidChange' in closure requires explicit 'self.' to make capture semantics
explicit. What are the “capture semantics” of a closure?

A closure has its own scope within its definition. By default, a closure takes a strong reference
to any variables that it uses inside the scope. netWorthDidChange(_:) is a method on self, so
calling it would give the closure a strong reference to self. This explains why you are leaking
memory: Accountant actually does have a strong reference back to Person! Accountant’s
netWorthChangedHandler is holding a strong reference to its owning Person via that Person’s self, as
shown in Figure 24.3.

Figure 24.3 Person to Accountant to Person strong reference cycle

Take another look at the error message: “to make capture semantics explicit.” Swift could allow you
to use self implicitly in closures, but doing so would make it very easy to accidentally create strong
reference cycles, as you have done here. Instead, the language requires you to be explicit about your
use of self, forcing you to consider whether a reference cycle is a possibility.

From the Library of wu yuan

ptg16315837

Chapter 24 Memory Management and ARC

298

To change the capture semantics of a closure to capture references weakly, you can use a capture list.
Modify Person.swift to use a capture list when creating the closure.

Listing 24.12 Using a capture list (Person.swift)
 init(name: String) {
 self.name = name

 accountant.netWorthChangedHandler = {
 [weak self] netWorth in

 self?.netWorthDidChange(netWorth)
 return
 }
 }

The capture list syntax is a list of variables inside square brackets ([]) immediately before the list
of the closure arguments. The capture list you wrote here tells Swift to capture self weakly instead
of strongly. Now that the Accountant’s closure no longer strongly references the Person, the strong
reference cycle is broken.

Note the use of self? in the body of the closure. Because self is captured weakly and all weak
instances must be optional, self inside the closure is optional.

Run your program again and confirm that all the instances are being deallocated appropriately:

created Optional(Person(Bob))
The net worth of Person(Bob) is now 1500.0
The net worth of Person(Bob) is now 1675.0
While Bob is alive, hat's owner is Optional(Person(Bob))
Person(Bob) is being deallocated
the bob variable is now nil
After Bob is deallocated, hat's owner is nil
Asset(Shiny Laptop, worth 1500.0, not owned by anyone) is being deallocated
Asset(Cowboy Hat, worth 175.0, not owned by anyone) is being deallocated
Asset(Blue Backpack, worth 45.0, not owned by anyone) is being deallocated

Bronze Challenge
The idea of asset ownership by a Person is incomplete. Person has a way to take ownership of an
asset, but no way to give up ownership of an asset. Update Person so that an instance can relinquish an
asset. (Hint: you will probably need to update Accountant, too, if you want a valid net worth value.)

Silver Challenge
Create another Person in main.swift. Immediately after you give Bob ownership of the laptop, try
giving your new Person ownership of the same laptop. Now both people own the laptop! Fix this bug.

From the Library of wu yuan

ptg16315837

For the More Curious: Can I Retrieve the Reference Count of an Instance?

299

For the More Curious: Can I Retrieve the Reference
Count of an Instance?
Unfortunately, Swift does not give you access to the actual reference count of any instances.

Even if you could ask an instance what its reference count is, the answer you get might not be what
you expect. Throughout this chapter, we said things like, “At this point, the reference count is 2.” That
was a white lie.

Conceptually, it is perfectly reasonable for you to think of reference counts the way we described.
Under the hood, the compiler is free to insert additional calls to retain (increment the reference count)
and release (decrement the reference count). As long as it does its job correctly, there is no harm to
your program. If you could ask what the actual reference count of an instance is, the answer would
depend on what sort of analysis the compiler had done at that point. Additionally, there are some
classes in the Mac and iOS system libraries that behave in strange ways when it comes to reference
counting (the details of which are beyond the scope of this book).

The important things for you to remember are how to recognize the potential for strong reference
cycles and how to use weak to break them.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

301

25
Equatable and Comparable

Much of programming depends on comparing values. It is important to know whether two values are
equal or, if not, how one value compares to another: is this value less than or greater than that value?

It is good practice to have your custom value types know how to compare themselves to other
instances. In fact, you have been doing this with Swift’s basic types throughout the book. Does this
string equal another string? Is this integer smaller than that integer? All of Swift’s basic types know
how to compare themselves to other instances of the same type. Why?

The answer is closely related to the purpose of value types. Instances of these types represent specific
values. There is an intrinsic expectation here that values can and should be comparable. We intuitively
want to know how one integer compares to another integer.

Swift provides two protocols for testing equality and comparability: Equatable and Comparable. This
chapter will show you how you can make a custom type conform to these protocols. This will involve
implementing a few functions that will teach instances of your type how to compare themselves to
other instances of the same type. Create a new playground called Comparison.playground to begin.

Conforming to Equatable
Create a new type that does not yet conform to the Equatable protocol.

Listing 25.1 Defining Point
struct Point {
 let x: Int
 let y: Int
}

The struct above defines a Point type. Point uses its x and y properties to describe a location on a two-
dimensional plane.

At the moment, Point does not know how to determine whether an instance is equal to another
instance. Create two instances of this type to see what happens when you check whether the two are
equal.

Listing 25.2 Creating two Points
struct Point {
 let x: Int
 let y: Int
}
let a = Point(x: 3, y: 4)
let b = Point(x: 3, y: 4)

From the Library of wu yuan

ptg16315837

Chapter 25 Equatable and Comparable

302

You create two new points, a and b, using the free memberwise initializer provided by the compiler.
You give both points the same values for their x and y properties. Now try to use the == operator to test
for equality between these two points.

Listing 25.3 Is a the same as b?
struct Point {
 let x: Int
 let y: Int
}

let a = Point(x: 3, y: 4)
let b = Point(x: 3, y: 4)
let abEqual = (a == b)

You should see in the timeline that this check for equality does not work. In fact, it generates an error
from the compiler. This error stems from the fact that you have not yet taught your Point struct how to
test for equality between two instances.

Teaching this to your struct will involve making Point conform to the Equatable protocol. Add the
following code to your struct’s declaration.

Listing 25.4 Adding a protocol conformance declaration
struct Point: Equatable {
 let x: Int
 let y: Int
}

let a = Point(x: 3, y: 4)
let b = Point(x: 3, y: 4)

let abEqual = (a == b)

Now you have a new error. This time, the error is on the line where you declare the Point struct. The
error will say something about Point not conforming to the Equatable protocol. In short, this means
that the compiler does not know how to check if a and b are equal.

To figure out how to conform to the Equatable protocol, open the documentation. Option-click on
Equatable and, in the pop-up, click on the link at the bottom to the “Equatable Protocol Reference” to
bring up the full reference.

The documentation tells you that you are required to implement the == operator. This implementation
must be done at global scope in order to conform to this protocol. Recall that a function, for example,
defined at global scope is not defined on any particular type so you need to write an implementation of
== outside of the definition of your Point type.

But == already has a definition; several, in fact. You can use == to compare strings, double, integers,
dictionaries, and so on. Because Point is a type that you have created yourself, you need to provide
another implementation of == so that Swift knows how to compare two instances of that type.

From the Library of wu yuan

ptg16315837

Conforming to Equatable

303

In Swift, overloading refers to providing multiple definitions for a function or method with the same
name. Each definition of the function will have its own implementation, meaning that the different
definitions will do different things. For the compiler to know which function you want to call, the
overloaded functions or methods need to differ in terms of their parameters (the number of parameters
and/or the types the parameters expect).

Why do you have to conform at global scope? If you think about it, this requirement makes sense
because == is not a method that you call on a specific type. Instead, == appears between and operates
on two targets at once: it checks to see whether the value on the lefthand side is equal to the value on
the righthand side. Operators that work on two targets like this are called infix operators.

You can now write an implementation of == that compares two instances of the Point type and tests for
their equality. Your implementation of == will be defined at global scope; that is, it will not be defined
on the Point struct. It will test for equality by checking to see if two instances of Point have the same
values in both the x and y properties.

Listing 25.5 Changing the implementation of ==
struct Point: Equatable {
 let x: Int
 let y: Int
}

func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y)
}

let a = Point(x: 3, y: 4)
let b = Point(x: 3, y: 4)

let abEqual = (a == b)

You now have a new implementation of the == operator. (Note that an operator is a just a function with
a special name.) This definition has two arguments: an lhs argument for the lefthand side and an rhs
for the righthand side of the equality check. Both of these arguments are expected to be of type Point.

The function’s implementation is straightforward. It compares the x and y values for both instances of
the Point type that are passed into the function’s arguments. Then it returns a Bool indicating whether
the instances are equal.

Take a look at your playground’s results sidebar. You should see that the errors are gone and that your
test for equality between a and b succeeds. The two points are equal because both of their x and y
values are the same. (Try changing just the x values so that they do not match. You should see that the
two points are no longer equal. Make sure to change the values back to their previous values before
proceeding.)

Your Point struct now conforms to Equatable, so you can test Points for equality. And there is more.
Swift’s standard library provides a default implementation of the != function that depends on the
definition of ==. This feature means that if your type conforms to Equatable by implementing its own
version of ==, then it also has a working implementation of the != function.

From the Library of wu yuan

ptg16315837

Chapter 25 Equatable and Comparable

304

Try it out by adding the following test.

Listing 25.6 Is a not the same as b?
struct Point: Equatable {
 let x: Int
 let y: Int
}

func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y)
}

let a = Point(x: 3, y: 4)
let b = Point(x: 3, y: 4)

let abEqual = (a == b)
let abNotEqual = (a != b)

The results sidebar should update to show that this test for inequality yields false. In other words, the
two points are equal, which means that they are not unequal.

Conforming to Comparable
Now that your Point type conforms to the Equatable protocol, you may be interested in more nuanced
forms of comparison. For example, perhaps you want to know if a point is less than another point. You
accomplish this functionality by conforming to the Comparable protocol.

Open the documentation for Comparable. Because you have not entered Comparable yet (so cannot
Option-click on its name), click on the Help menu and select Documentation and API Reference.
Search for “Comparable” to determine what is needed. You will find that you need to overload one
operator: the < infix operator. Add the following code to your struct to make it conform to Comparable.

Listing 25.7 Conforming to Comparable
struct Point: Equatable, Comparable {
 let x: Int
 let y: Int
}

func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y)
}

func <(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x < rhs.x) && (lhs.y < rhs.y)
}

let a = Point(x: 3, y: 4)
let b = Point(x: 3, y: 4)

let abEqual = (a == b)
let abNotEqual = (a != b)

From the Library of wu yuan

ptg16315837

Conforming to Comparable

305

You have added a new declaration to your Point that says that it conforms to the Comparable protocol.
You also added a global implementation of the < operator. This implementation works similarly to your
implementation of ==. It checks whether the point passed in on the lefthand side is less than the point
passed in on the righthand side. If the x and y values for the point on the lefthand side are both smaller
than the values on the righthand side, the function will return true. Otherwise, the function will return
false, indicating that the point on the lefthand side is not less than the righthand side.

Create two new points to test this function.

Listing 25.8 Testing the < function
struct Point: Equatable, Comparable {
 let x: Int
 let y: Int
}

func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y)
}

func <(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x < rhs.x) && (lhs.y < rhs.y)
}

let a = Point(x: 3, y: 4)
let b = Point(x: 3, y: 4)

let abEqual = (a == b)
let abNotEqual = (a != b)
let c = Point(x: 2, y: 6)
let d = Point(x: 3, y: 7)

let cdEqual = (c == d)
let cLessThanD = (c < d)

You create two new points with different values for x and y. You check to see whether c and d are
equal, which returns false: the two points are not the same. Last, you exercise your overload of the <
operator to determine whether c is less than d. In this case, the comparison evaluates to true. The point
c is less than the point d because both its x and y values are smaller than d’s.

As with conforming to the Equatable protocol, implementing one function can give you much more
functionality. The Swift standard library defines the >, >=, and <= operators in terms of the < and
== operators. This is why Comparable only requires that you overload the < operator. If your type
conforms to Comparable, then it will get implementations of these operators for free.

From the Library of wu yuan

ptg16315837

Chapter 25 Equatable and Comparable

306

Test this functionality by adding a series of new comparisons.

Listing 25.9 Exercising comparisons
struct Point: Equatable, Comparable {
 let x: Int
 let y: Int
}

func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y)
}

func <(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x < rhs.x) && (lhs.y < rhs.y)
}

let a = Point(x: 3, y: 4)
let b = Point(x: 3, y: 4)

let abEqual = (a == b)
let abNotEqual = (a != b)
let c = Point(x: 2, y: 6)
let d = Point(x: 3, y: 7)

let cdEqual = (c == b)
let cLessThanD = (c < d)

let cLessThanEqualD = (c <= d)
let cGreaterThanD = (c > d)
let cGreaterThanEqualD = (c >= d)

These last three comparisons check whether:

• c is less than or equal to d

• c is greater than d

• c is greater than or equal to d

As anticipated, these comparisons evaluate to true, false, and false, respectively.

From the Library of wu yuan

ptg16315837

Comparable’s Inheritance

307

Comparable’s Inheritance
Comparable actually inherits from Equatable. You may be able to guess what the implication of
this inheritance is. In order to conform to the Comparable protocol, you must also conform to the
Equatable protocol by supplying an implementation of the == operator. This relationship also means
that a type does not have to explicitly declare conformance to Equatable if it declares conformance to
Comparable. Remove the explicit declaration of conformance to Equatable from your Point struct.

Listing 25.10 Removing the unnecessary conformance declaration
struct Point: Equatable, Comparable {
 let x: Int
 let y: Int
}

func ==(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x == rhs.x) && (lhs.y == rhs.y)
}

func <(lhs: Point, rhs: Point) -> Bool {
 return (lhs.x < rhs.x) && (lhs.y < rhs.y)
}

...

You should see that the playground works just as it did before.

One final note on style. While it is not wrong to explicitly declare conformance to both Equatable
and Comparable, it is unnecessary. If your type conforms to Comparable, then it must conform to
Equatable as well. This point is a detail listed in the documentation, which makes it an expected
consequence of conforming to Comparable. Adding the explicit conformance to Equatable does not
add that much more information.

On the other hand, it may make sense to have a type explicitly conform to all protocols involved when
conforming to a custom protocol that inherits from another protocol. Although it is still unnecessary, it
may make your code more readable and easier to maintain, because your custom protocol is not listed
in the official documentation.

Bronze Challenge
Make it possible to add two points together. The addition of two points should return a new Point that
adds the given points’ x values and y values. You will need to overload the + operator for the Point
struct.

Gold Challenge
Create a new Person class with two properties: name and age. For convenience, create an initializer that
provides arguments for both of these properties.

Next, create two new instances of the Person class. Assign those instances to two constants named p1
and p2. Also create an array named people to hold these instances and then put them inside the array.

You will occasionally need to find the index of an instance of a custom type within an array. Call the
indexOf(_:) method on your array to do so. The argument takes the value of some element in the

From the Library of wu yuan

ptg16315837

Chapter 25 Equatable and Comparable

308

collection whose index you would like to find. Use the method to find the index of p1 inside of the
people array.

You will get an error. Take some time to understand the error, and then resolve it. You should be able to
assign the result of the indexOf to a constant named p1Index. Its value should be 0.

Platinum Challenge
Point’s current conformance to Comparable yields some confusing results.

let c = Point(x: 3, y: 4)
let d = Point(x: 2, y: 5)

let cGreaterThanD = (c > d) // false
let cLessThanD = (c < d) // false
let cEqualToD = (c == d) // false

As the above example demonstrates, the trouble arises in comparing two points when one point’s x and
y properties are not both larger than the other point’s. In actuality, it is not reasonable to compare two
points in this manner.

Fix this problem by changing Point’s conformance to Comparable. Calculate each point’s Euclidean
distance from the origin instead of comparing x and y values. This implementation should return true
for a < b when a is closer to the origin than b.

Use the formula shown in Figure 25.1 to calculate a point’s Euclidean distance:

Figure 25.1 Euclidean distance

For the More Curious: Custom Operators
Swift allows developers to create custom operators. This feature means that you can create your own
operator to signify that one instance of the Person type has married another instance. Say, for example,
you want to create the +++ to marry one instance to another.

Create a new Person class like so:

Listing 25.11 Setting up a Person class
...
class Person: Equatable {
 var name: String
 weak var spouse: Person?

 init(name: String, spouse: Person?) {
 self.name = name
 self.spouse = spouse
 }
}

From the Library of wu yuan

ptg16315837

For the More Curious: Custom Operators

309

The class has two properties: one for a name and another for a spouse. It also has an initializer that will
give values to those properties. Note that the spouse property is an optional to indicate that a person
may not have a spouse.

Next, create two instances of this class.

Listing 25.12 Creating two instances of person
...
class Person: Equatable {
 var name: String
 weak var spouse: Person?

 init(name: String, spouse: Person?) {
 self.name = name
 self.spouse = spouse
 }
}

let matt = Person(name: "Matt", spouse: nil)
let drew = Person(name: "Drew", spouse: nil)

Now, declare your new infix operator. It has to be declared at global scope. Also, define how the new
operator function will work.

Listing 25.13 Declaring a custom operator
...
class Person: Equatable {
 var name: String
 weak var spouse: Person?

 init(name: String, spouse: Person?) {
 self.name = name
 self.spouse = spouse
 }
}

let matt = Person(name: "Matt", spouse: nil)
let drew = Person(name: "Drew", spouse: nil)

infix operator +++ {}

func +++(lhs: Person, rhs: Person) {
 lhs.spouse = rhs
 rhs.spouse = lhs
}

The new operator, +++, will be used to marry two instances of the Person class. As an infix operator, it
will be used between two instances. The implementation of +++ will assign each instance to the other’s
spouse property.

From the Library of wu yuan

ptg16315837

Chapter 25 Equatable and Comparable

310

Exercise this new operator like so:

Listing 25.14 Using the custom operator
...
class Person: Equatable {
 var name: String
 weak var spouse: Person?

 init(name: String, spouse: Person?) {
 self.name = name
 self.spouse = spouse
 }
}

let matt = Person(name: "Matt", spouse: nil)
let drew = Person(name: "Drew", spouse: nil)

infix operator +++ {}

func +++(lhs: Person, rhs: Person) {
 lhs.spouse = rhs
 rhs.spouse = lhs
}

matt +++ drew
matt.spouse?.name
drew.spouse?.name

The code matt +++ drew serves to marry the two instances. Check that this process worked by
examining the playground’s results sidebar.

While this operator works, and it is not too difficult to determine what is going on by looking at
it, we generally recommend that you avoid declaring custom operators. It is good practice to only
create custom operators for your own types when the operator will be recognizable to anyone who
may read your code. That typically means restricting your custom operators to the realm of well-
known mathematical operators. (In fact, Swift only allows you to use a well-defined collection of
mathematical symbols to create custom operators. For example, you cannot refactor the +++ operator to
be the emoji “face throwing a kiss” (i.e., U+1F61A).

Someone reviewing your code in the future may not know exactly what you meant by +++. (You might
even forget, yourself.) After all, it is fairly ambiguous in this case.

Moreover, it is not as though this custom operator accomplishes something more elegantly or
efficiently than a marry(_:) method would. For example, a marry(_:) method might look like this:

func marry(spouse: Person) {
 self.spouse = spouse
 spouse.spouse = self
}

This code is far more readable, and it is quite clear what the code is doing. These qualities will make it
easier to maintain in the future.

From the Library of wu yuan

ptg16315837

Part VI
Event-Driven Applications

In this part of the book, you will apply your knowledge of Swift to develop your first Mac and iOS
applications. Along the way, you will see the basics of interoperating between Swift and Objective-C,
Apple’s precursor to Swift.

From the Library of wu yuan

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

313

26
Your First Cocoa Application

One of Swift’s most compelling features is its ability to interact with Objective-C, the language in
which Mac and iOS apps have traditionally been written. We are not going to cover the full story of
how the two languages live side by side in one app, but the next three chapters will give you a taste.
Swift makes it possible to use Objective-C libraries like Cocoa, the native API for developing desktop
Mac apps.

Swift is able to talk to Cocoa (and other Objective-C frameworks) using techniques broadly described
as bridging. Bridging is the process by which a function or instance in one language can be called
from or given to the other language. The bridging goes in both directions: Swift can call Objective-C
functions, and Objective-C can call Swift functions (with some restrictions). Most of the time, the
compiler handles all the details of bridging for you, but occasionally it needs you to step in and give it
some help. You will see some examples of that shortly.

In this chapter, you are going to create VocalTextEdit, a desktop application for Mac. VocalTextEdit is
a very simple text editor that has the bonus feature of being able to read your document aloud to you.
This application is very simple; it will give you only a taste of how Cocoa development works. For
a much more thorough exploration of Cocoa, see the most recent edition of Cocoa Programming for
OS X: The Big Nerd Ranch Guide.

VocalTextEdit will be a document-based application. This allows users to have multiple windows open
at the same time, each representing a different file. When you are done, your application will look like
Figure 26.1.

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

314

Figure 26.1 Complete VocalTextEdit application

The bottom portion of each VocalTextEdit document window should look familiar: it is a simple text
editor. The Speak button at the top allows the user to have the computer speak the contents of the text
document. The Stop button stops any active speaking. VocalTextEdit, as a user would expect from a
document-based application, also supports the normal save and open operations as well as autosaving.

Please note that this chapter uses OS X Storyboards, which requires you to be running OS X 10.10
(Yosemite) or later.

From the Library of wu yuan

ptg16315837

Getting Started with VocalTextEdit

315

Getting Started with VocalTextEdit
In Xcode, choose File → New → Project... (or, from the Welcome screen, Create a new Xcode project).
Select Application under the OS X section (not iOS). Select the Cocoa Application template and click
Next (Figure 26.2).

Figure 26.2 Choosing the Cocoa Application template

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

316

In the next window, name the project VocalTextEdit (Figure 26.3). Make sure the selected language is
Swift. Check both the Use Storyboards and Create Document-Based Application boxes. Enter txt as
the Document Extension (VocalTextEdit is ultimately just a text editor, and it will save text files).

Figure 26.3 Configuring VocalTextEdit

Click Next and finish creating your project by saving it to the location of your choice.

Before diving into your app, let’s briefly look at a core pattern that is used by both Cocoa and iOS
applications.

From the Library of wu yuan

ptg16315837

Model-View-Controller

317

Model-View-Controller
Model-View-Controller, or MVC, is a design pattern that is based on the idea that any class that you
create should fall into one of three job categories: model, view, or controller. Here is a breakdown of
the division of labor:

• Models are responsible for storing data and making it available to other objects. Models have
no knowledge of the user interface or how to draw themselves on the screen. Their sole purpose
is holding and managing data. For example, an application that tracks attendance for a school
would define a model object for Student. A Student would “model” all of the attributes a real
student would have, such as a name and a grade. Swift types like String and Array are traditional
building blocks of model objects. In VocalTextEdit, the Document class will act as the model
object for each of the user’s text files.

• Views are the visual elements of an application. Views know how to draw themselves on the
screen and how to respond to user input. Views have no knowledge of the actual data that they
display or how it is structured and stored. A simple rule of thumb is: if you can see it, it is a view.
In VocalTextEdit, your view objects will include instances of NSTextView and NSButton.

• Controllers perform the logic necessary to connect your views and models. They process events,
often from the user of the application, and relay information from your views down to your
models and back again. Controllers are the real workhorses of any application, as they are the
mediators between models and views. In VocalTextEdit, the ViewController class will coordinate
between the appropriate Document and the views that are visible on the screen.

Figure 26.4 shows the flow of control between objects in response to a user event, like a button click.
Notice that models and views do not talk to each other directly – controllers sit squarely in the middle
of everything, receiving messages from some objects and dispatching instructions to others.

Figure 26.4 MVC flow with user input

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

318

Setting Up the View Controller
The template creates a few Swift files and a file called Main.storyboard, which you will get to
momentarily. First, open ViewController.swift. Begin by removing the overridden functions the
template provided for you, as you will not need them for this app.

Listing 26.1 Cleaning out template code (ViewController.swift)
class ViewController: NSViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 // Do any additional setup after loading the view.
 }

 override var representedObject: AnyObject? {
 didSet {
 // Update the view, if already loaded.
 }
 }

}

Note that the ViewController class is a subclass of NSViewController. As the name suggests, a view
controller manages the user interface and responds to actions by the user.

Add one new property and two instance methods. Some of this code will look unfamiliar; we will
explain it after you have typed it in.

Listing 26.2 Adding a property and two instance methods
(ViewController.swift)
class ViewController: NSViewController {

 @IBOutlet var textView: NSTextView!

 @IBAction func speakButtonClicked(sender: NSButton) {
 print("The speak button was clicked")
 }

 @IBAction func stopButtonClicked(sender: NSButton) {
 print("The stop button was clicked")
 }

}

Ignore @IBOutlet and @IBAction for just a moment and examine the rest of what you typed. You
declared an implicitly unwrapped optional property, textView, and two functions that take NSButton
arguments and return nothing. The textView property will be your handle to the portion of the
document window that displays editable text. On Mac, the class that Cocoa gives you to provide this
functionality is NSTextView.

From the Library of wu yuan

ptg16315837

Setting Up the View Controller

319

Look at the documentation for NSTextView by Option-clicking its name. In the pop-up, click on the
NSTextView Class Reference link at the bottom to bring up the full reference documentation for
NSTextView (Figure 26.5).

Figure 26.5 NSTextView reference documentation

NSTextView has many properties and methods, but the only one you need for this application is actually
provided by NSTextView’s superclass, NSText. You can jump to NSText’s reference documentation by
clicking on the NSText link at the very top, in NSTextView’s Inherits from: section. NSText supplies the
string property, which will allow you to get and set the contents of the text view as a String.

The IB in @IBOutlet and @IBAction stands for “Interface Builder.” A long time ago (by software
standards), Apple provided two different tools for developing apps: Xcode, used for source code, and
Interface Builder, used for laying out the user interface. Interface Builder was merged into Xcode, but
iOS and Cocoa programmers and Apple still often refer to the “user interface layout” parts of Xcode as
Interface Builder.

@IBOutlet and @IBAction are attributes. The @IBOutlet and @IBAction here do not change the code
in any meaningful way. Instead, they let Xcode know that the attributed properties and methods are
involved with Interface Builder. @IBOutlet tells Xcode that the textView property can be assigned in
Interface Builder. @IBAction advertises the method to Interface Builder as one that can be called when
a user interacts with a view, such as by clicking on a button.

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

320

Setting Up Views in Interface Builder
Time to set up your views. In the project navigator on the lefthand side of Xcode, select the
Main.storyboard file. A storyboard file allows you to visually lay out the windows and views of your
application using Interface Builder. Large applications may use many storyboards. You are only going
to use Main.storyboard for VocalTextEdit. Main.storyboard starts out looking like Figure 26.6.

Figure 26.6 Initial Main.storyboard contents

The pane just to the left of the user interface in Figure 26.6 is the document outline. The document
outline presents a tree showing how each object contains its children. If the document outline is not
visible, click the Show Document Outline button at the bottom of Interface Builder (Figure 26.7).

Figure 26.7 Show the document outline

From the Library of wu yuan

ptg16315837

Setting Up Views in Interface Builder

321

There are currently three top-level scenes in Main.storyboard. From top to bottom, you are seeing
the application’s main menu, a window controller scene, and a view controller scene. You will only be
working with the view controller scene. Right now, the view controller scene contains a single line of
text contained in an NSTextField. You do not need that, so remove it by clicking on the Your document
contents here text and pressing Delete on your keyboard.

Now that you have prepared a blank canvas for your application, you are going to lay out the views for
VocalTextEdit. If the utilities area is not already visible, click the button in the far top-right corner of
Xcode to make it visible, as shown in Figure 26.8.

Figure 26.8 Showing Xcode’s utilities

The bottom half of the utilities area is the library. The library is divided into tabs, identified by icons.
Select the icon to reveal the object library. The object library presents the different object types that
you can drag and drop on the layout grid to build your user interface.

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

322

Adding the Speak and Stop buttons
At the bottom of the object library is a search field. Search for “button.” The item at the top of the
object library, Push Button, represents an instance of the NSButton class.

To add an instance of a push button to your view controller’s user interface, drag the button from the
object library onto the view controller scene. As you drag the button toward the top-right corner of
the view, you will see dashed blue lines and the button will snap into place, as shown in Figure 26.9.
The dashed lines are from Apple’s Human Interface Guidelines, or HIGs. The HIGs represent Apple’s
standards for designing user interfaces for the Mac. There are also HIGs for iOS devices, and you can
find all the HIGs in the developer documentation.

Figure 26.9 Dragging from object library to storyboard

Now that the button is in the view controller scene, you need to change its title. Double-click on the
button’s text and type in Speak. Because “Speak” is slightly shorter than “Button,” this may nudge the
button out of place. Drag it back into the corner until it snaps back to the dashed blue lines. (We will
cover a way to fix this a little later in the chapter.)

VocalTextEdit needs both a Speak and a Stop button. Drag another push button onto your view
controller. Rename this second button Stop and drag it until it snaps into place just to the left of the
Speak button. Your view controller layout should look like Figure 26.10.

From the Library of wu yuan

ptg16315837

Adding the text view

323

Figure 26.10 VocalTextEdit layout: two buttons

Adding the text view
VocalTextEdit is predominantly a text editor, so you need to add a place for the user to enter text. Back
in the search field for the object library, type in “textview.” Drag a text view object onto your view
controller layout and place it in the middle of the empty area below the buttons, as in Figure 26.11.

Figure 26.11 VocalTextEdit layout: adding a text view

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

324

In addition to being able to select items by clicking on them in the layout, you can select them
by clicking them in the document outline. Select the Bordered Scroll View - Text View item in the
document outline, as shown in Figure 26.12.

Figure 26.12 Selecting a text view in the document outline

Notice that the text view is now selected both in the document outline (where it is highlighted in blue)
and in the view controller scene (where it has square grab-points at its corners and on each side).
Use the squares around the edges of the text view in the layout to resize it. Drag the left, right, and
bottom edges until they are even with the view controller’s edges, and drag the top until it snaps into
place beneath the two buttons you have already added. At this point, your layout should look like
Figure 26.13.

Figure 26.13 VocalTextEdit: layout

From the Library of wu yuan

ptg16315837

Adding the text view

325

Build and run your app. After VocalTextEdit starts, you can create documents using Command-N
(or File → New). You can also type into the text view. Unsurprisingly, the Speak and Stop buttons
do nothing. Also, you may see error pop-ups about failures to autosave. You will fix both of these
problems by the end of this chapter.

There is another problem that is not obvious. Try resizing your document window to give yourself
more room to see your document. You may be surprised to find that your interface does not behave
well (Figure 26.14).

Figure 26.14 Resizing failure

This resizing (mis)behavior is clearly undesirable. You will fix it next.

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

326

Auto Layout
Cocoa and iOS provide a system called Auto Layout that allows you to set up constraints that define
how views interact with each other during layout calculations. Full coverage of Auto Layout is outside
the scope of this book, but you can set up some basic constraints that will allow you to get reasonable
behavior when you resize a VocalTextEdit document.

Begin by creating constraints that will force the Speak button to stay in the top-right corner of the
document window. Hold down the Control key, click on the Speak button, and drag to the upper right
until the view controller’s view is highlighted, as in Figure 26.15. (This is called “Control-dragging.”)

Figure 26.15 Auto Layout: Speak

When you let go of the mouse, a contextual menu will pop up. You want to constrain the right and top
edges of the button, so hold down the Shift key and click on both Trailing Space to Container and Top
Space to Container (Figure 26.16).

Figure 26.16 Auto Layout: Speak button constraints

From the Library of wu yuan

ptg16315837

Auto Layout

327

Press Return, and you will see a blue I-beam line connecting the top of the Speak button to the top of
the view controller’s view and another connecting the right edges. Run VocalTextEdit again and try
resizing the window. You will see the Speak button stay in the correct place – the top-right corner – as
you resize the window.

The Stop button and the text view still do not behave correctly; you need to add constraints to them.
The Stop button is straightforward. You could add the same kinds of constraints to the Stop button as
you did to the Speak button, pinning its top and right edges to the view controller’s view. But that does
not express the real layout relationship. You do not really care where the Stop button is relative to the
view controller’s view. What you want is for it to always be just to the left of the Speak button.

To create constraints between the Stop and Speak buttons, Control-drag from the Stop button to the
Speak button. When the pop-up menu appears, hold down Shift and select both Horizontal Spacing and
Baseline (Figure 26.17), then press Return.

Figure 26.17 Auto Layout: Stop button constraints

The horizontal spacing constraint ensures that the horizontal distance between the buttons stays fixed.
The baseline constraint ensures that the two buttons are vertically aligned, using the baseline of the
text within the buttons. Run VocalTextEdit again, resize the window, and confirm that the Stop button
always stays in the correct place.

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

328

Creating constraints for the text view is a bit more complicated. You want the text view to stay the
same size as the window, minus the space at the top for the two buttons. Remember how you can select
items in the document outline? You can also create constraints in the document outline. Control-drag
from Bordered Scroll View - Text View to its parent, View, as shown in Figure 26.18.

Figure 26.18 Auto Layout: text view to view controller view

In the pop-up menu, hold down Shift and select three constraints: Leading Space to Container, Trailing
Space to Container, and Bottom Space to Container. These constraints will pin the left, right, and
bottom edges to always stick to the window’s edges.

You still need to constrain the top edge. Back in the layout area, Control-drag from the text view to
the Speak button. Select Vertical Spacing from the pop-up. This will maintain the spacing between the
button and the text view.

Run VocalTextEdit again and resize your windows. Now all of the interface elements properly resize
with the window.

From the Library of wu yuan

ptg16315837

Making Connections

329

Making Connections
Creating views and laying out your user interface is not the only purpose of Interface Builder. You can
also use Interface Builder to wire up connections between your views and your Swift code.

Setting target-action pairs for VocalTextEdit’s buttons
When you run your application and Main.storyboard is loaded, the Cocoa runtime will create an
instance of your ViewController class, configure its views, and set up any outlets and actions you
have configured. For VocalTextEdit, you want the speakButtonClicked(_:) method to be called on
the instance of ViewController that is managing the current document. Control-drag from the Speak
button to the icon representing the ViewController, as in Figure 26.19.

Figure 26.19 Connecting the Speak button

You will see a pop-up menu when you let go of the mouse. This menu shows you all the possible
actions to take when the Speak button is clicked. Select the speakButtonClicked(_:) action from the
Received Actions section of the pop-up.

You just created a target-action pair. A target-action pair associates an action (e.g., a method) to be
called on a target (e.g., an instance of some type), usually in response to an action by a user (e.g.,
clicking on a button). When the user clicks on the Speak button, the speakButtonClicked(_:) method
will be called on your ViewController.

Repeat the process to create a target-action pair for the Stop button. Control-drag from the Stop button
to the ViewController icon. Select the stopButtonClicked(_:) action from the pop-up menu.

Build and run the application. Try clicking on the buttons. Back in Xcode, you will see log messages
being printed whenever you click either button. Those are the result of the print() calls you put into
the speakButtonClicked(_:) and stopButtonClicked(_:) methods back at the beginning of this
chapter.

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

330

Connecting the text view outlet
You have now connected both buttons, and your methods are called whenever the user clicks them.
However, you still cannot get the text the user has entered into the text view. To do that, you need to
connect the @IBOutlet you created for the text view.

To connect an outlet, Control-drag from the View Controller icon down to the text view, as in
Figure 26.20. Note that this is the opposite of how you connected the button actions.

Figure 26.20 Connecting the text view outlet

From the pop-up that appears, select textView, which matches the name of the @IBOutlet property
you created.

From the Library of wu yuan

ptg16315837

Making VocalTextEdit… Vocal

331

You can build and run your application now, but nothing will behave any differently. Your @IBActions
fire whenever the user clicks a button, but connecting an @IBOutlet does not by itself affect your
program. Now that you have an outlet to the text view, open ViewController.swift and modify your
speakButtonClicked(_:) method to log the current contents of the text view.

Listing 26.3 Making the Speak button log the contents of the text view
(ViewController.swift)
class ViewController: NSViewController {

 @IBOutlet var textView: NSTextView!

 @IBAction func speakButtonClicked(sender: NSButton) {
 print("The speak button was clicked" "I should speak \(textView.string)")
 }

 @IBAction func stopButtonClicked(sender: NSButton) {
 print("The stop button was clicked")
 }

}

Build and run your application. Type some text into the text view and click the Speak button. The text
you typed is logged via your print() call, with a note that the string property of an NSTextView is
optional:

I should speak Optional("Hello, world!")

Making VocalTextEdit… Vocal
Logging the text is nice, but the real goal of VocalTextEdit is that the computer will read your users’
text to them. Cocoa provides a class for synthesizing speech, suitably named NSSpeechSynthesizer.
Begin by adding a property to your ViewController that is an instance of NSSpeechSynthesizer.

Listing 26.4 Adding an instance of NSSpeechSynthesizer
(ViewController.swift)
class ViewController: NSViewController {

 let speechSynthesizer = NSSpeechSynthesizer()

 @IBOutlet var textView: NSTextView!

 @IBAction func speakButtonClicked(sender: NSButton) {
 print("I should speak \(textView.string)")
 }

 @IBAction func stopButtonClicked(sender: NSButton) {
 print("The stop button was clicked")
 }

}

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

332

The default initializer of NSSpeechSynthesizer creates a speech synthesizer that uses a default voice.
Now that you have a speech synthesizer, modify your speakButtonClicked(_:) method to actually
synthesize the contents of textView. Use NSSpeechSynthesizer’s method startSpeakingString(_:),
which expects a String.

Listing 26.5 Activating the speech synthesizer (ViewController.swift)
class ViewController: NSViewController {

 let speechSynthesizer = NSSpeechSynthesizer()

 @IBOutlet var textView: NSTextView!

 @IBAction func speakButtonClicked(sender: NSButton) {
 print("I should speak \(textView.string)")
 if let contents = textView.string {
 speechSynthesizer.startSpeakingString(contents)
 } else {
 speechSynthesizer.startSpeakingString("The document is empty.")
 }
 }

 @IBAction func stopButtonClicked(sender: NSButton) {
 print("The stop button was clicked")
 }

}

You use optional binding to get the contents of the text view, if there are any, and then speak them. If
textView.string is nil, speechSynthesizer will speak the sentence "The document is empty."

Build and run your application. Type in some text – perhaps “Hello, world!” – and click the Speak
button. You should hear your computer read your text back to you! (Make sure your sound is not
muted.)

Now try deleting all the text and clicking Speak. Nothing happens! Why didn’t the computer
synthesize "The document is empty"?

There are actually two different ways the contents of a text view can be “empty.” The string
property could be nil, which would be handled by the code you already wrote. The other possibility
is that the string property is not nil, but the String it contains is "", the empty string. Modify
speakButtonClicked(_:) to handle this case.

Listing 26.6 Handling both types of empty string (ViewController.swift)
...
 @IBAction func speakButtonClicked(sender: NSButton) {
 if let contents = textView.string where !contents.isEmpty {
 speechSynthesizer.startSpeakingString(contents)
 } else {
 speechSynthesizer.startSpeakingString("The document is empty.")
 }
 }
...

Build and run the application again. Leaving the text view empty, click the Speak button. Now you
should hear the synthesized comment that the document is empty.

From the Library of wu yuan

ptg16315837

Making VocalTextEdit… Vocal

333

Now that VocalTextEdit can read your documents back to you, it would be nice to be able to
stop the speaking. You already have a Stop button. The only thing you have to do is change
the stopButtonClicked(_:) method to actually do something instead of calling print().
NSSpeechSynthesizer provides a convenient method to do exactly what you want:

Listing 26.7 Stop! (ViewController.swift)
...
 @IBAction func stopButtonClicked(sender: NSButton) {
 print("The stop button was clicked")
 speechSynthesizer.stopSpeaking()
 }
...

Now, if VocalTextEdit is speaking, the Stop button will immediately stop the vocalization. There is no
harm in calling speechSynthesizer.stopSpeaking() when VocalTextEdit is not speaking, so you do
not need to guard against that possibility.

Build and run VocalTextEdit. Type some text – something long enough that it will take a while for the
computer to vocalize it – and click the Speak button. Then, while the text is being read, click the Stop
button. The vocalization should stop immediately.

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

334

Saving and Loading Documents
VocalTextEdit is starting to come together! You can enter text and hear it spoken back to you.
Unfortunately, there is a pretty major feature missing: the files cannot be saved. You might have seen a
notification that your documents cannot be autosaved, as in Figure 26.21.

Figure 26.21 VocalTextEdit autosave failure

Even worse, if you try to save a document, you get a pretty nasty error message, as shown in
Figure 26.22.

From the Library of wu yuan

ptg16315837

Saving and Loading Documents

335

Figure 26.22 VocalTextEdit save failure

This might be a little surprising, because VocalTextEdit just works with text documents. The problem is
that although you and your users know VocalTextEdit is working with text documents, Cocoa does not
know that. You have to fill in some methods that allow Cocoa to save and load your documents.

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

336

To begin, open up Document.swift and delete some of the boilerplate that you do not need.

Listing 26.8 Clearing the decks (Document.swift)
class Document: NSDocument {

 override init() {
 super.init()
 // Add your subclass-specific initialization here.
 }

 override func windowControllerDidLoadNib(aController: NSWindowController) {
 super.windowControllerDidLoadNib(aController)
 // Add any code here that needs to be
 // executed once the windowController has ...
 }

 override class func autosavesInPlace() -> Bool {
 return true
 }

 override func makeWindowControllers() {
 // Returns the Storyboard that contains your Document window.
 let storyboard = NSStoryboard(name: "Main", bundle: nil)
 let windowController =
 storyboard.instantiateControllerWithIdentifier(
 "Document Window Controller"
) as! NSWindowController

 self.addWindowController(windowController)
 }

 override func dataOfType(typeName: String) throws -> NSData {
 // Insert code here to write your document to data of the specified type. ...
 throw NSError(domain: NSOSStatusErrorDomain, code: unimpErr, userInfo: nil)
 }

 override func readFromData(data: NSData, ofType typeName: String) throws {
 // Insert code here to read your document
 // from the given data of the specified type. ...
 throw NSError(domain: NSOSStatusErrorDomain, code: unimpErr, userInfo: nil)
 }

}

Let’s walk through the remaining methods.

autosavesInPlace() is a class-level method on NSDocument. If autosavesInPlace() returns true,
that means the document class supports autosaving files right where they are whenever the user makes
changes. The default implementation returns false, so the Xcode template helpfully inserts an override
to return true, and it is up to you to make sure autosaving works correctly. (This will not be difficult for
VocalTextEdit.)

The next method, makeWindowControllers(), is called when a new document is created or an old
document is open and is responsible for setting up the NSWindowController that will manage the
document’s window. Because you are using a storyboard, setting up the window controller is pretty

From the Library of wu yuan

ptg16315837

Type casting

337

easy: it needs to be loaded from the storyboard (the first two lines) and then added to the document (the
final line).

There is one feature on the second line of makeWindowControllers()’s implementation that you have
not seen before. The as! operator is one of Swift’s type casting operators.

Type casting
Type casting allows you to tell the compiler, “This object, which you think is of type X, is actually of
type Y.” In pure Swift code, type casting should usually be avoided, as other tools like inheritance and
generics can often solve the same problems. However, type casting comes up quite frequently when
dealing with Mac and iOS libraries that were written in Objective-C.

The as! operator acts similarly to unwrapping an optional. If you try to type cast to a type that does
not match the actual type, you will get a trap. (If you do not remember what a trap is, refer back to
Chapter 20.) There are two other variants of this type-casting operator: as? attempts to perform a type
cast and returns nil if the type you request does not match the actual type, and as performs type casts
that the Swift compiler can guarantee will succeed, such as from NSString to String.

Option-click on the instantiateControllerWithIdentifier(_:) method call in the second line of
makeWindowControllers()’s implementation. Note that its return type is AnyObject. AnyObject is a
Swift protocol that has no methods or properties: the only thing you know is that it is an instance of
some class. instantiateControllerWithIdentifier(_:) returns an AnyObject because storyboards
can contain controllers of many different types. In order to make use of the returned controller,
you need to cast it to its actual type: NSWindowController. When you create a storyboard-based
application, Xcode assigns the Document Window Controller identifier to the NSWindowController it
creates, and inserts the same identifier for you on this line.

Saving documents
The final two methods in Document.swift support saving and loading. The dataOfType(_:) method
is called whenever a document needs to be saved. It typically returns an instance of NSData. You
can think of NSData as something akin to an array of bytes. If you are able to save the document,
dataOfType(_:) returns the bytes that should be saved to disk. If you cannot save the document for
any reason, it throws an error.

The associated method to implement loading a document is readFromData(_:ofType:). Its first
parameter is an instance of NSData, and readFromData(_:ofType) loads the document from those
bytes. If the loading is unsuccessful, it throws an error.

At the moment, both dataOfType(_:) and readFromData(_:ofType) always fail, which explains
why you see autosave failures. Note that the project has comments in these methods indicating that
you will need to do something: // Insert code here to write your document to data of the
specified type. …. You are going to fix them. Begin by implementing dataOfType(_:) to be able to
save VocalTextEdit’s text files.

To save the document, you need to convert the contents of the text view into an NSData. The first step is
to get the ViewController associated with this Document.

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

338

Listing 26.9 Getting the associated ViewController (Document.swift)
...
 override func dataOfType(typeName: String) throws -> NSData {
 // Insert code here to write your document to data of the specified type. ...
 throw NSError(domain: NSOSStatusErrorDomain, code: unimpErr, userInfo: nil)
 let windowController = windowControllers[0]
 let viewController = windowController.contentViewController as! ViewController
 }
...

In general, an NSDocument may have multiple window controllers. In this case, you only created one (in
makeWindowControllers()), so windowControllers[0] gives you that sole window controller.

An NSWindowController may or may not have a view controller for its content – the Mac
platform has had window controllers much longer than it has had view controllers. Option-click on
contentViewController to see its type, and you will see NSViewController?. windowController
may not have a content view controller, in which case the property is nil. If windowController does
have a content view controller, the compiler knows it will be an NSViewController or some subclass
of NSViewController.

In this application, you only have one ViewController type, but in a large application, you might have
many. You used the as! type casting operator to tell the compiler, “I know that the view controller for
Document’s window controllers are of type ViewController.”

Now that you have a handle to the view controller, you can implement the rest of dataOfType(_:).

Listing 26.10 Implementing dataOfType(_:) for saving (Document.swift)
...
 override func dataOfType(typeName: String) throws -> NSData {
 let windowController = windowControllers[0]
 let viewController = windowController.contentViewController as! ViewController

 let contents = viewController.textView.string ?? ""

 if let data = contents.dataUsingEncoding(NSUTF8StringEncoding) {
 return data
 } else {
 let userInfo = [
 NSLocalizedRecoverySuggestionErrorKey:
 "File cannot be encoded in UTF-8."
]
 throw NSError(
 domain: "com.bignerdranch.VocalTextEdit", code: 0, userInfo: userInfo)
 }
 }
...

Let’s break this down line by line.

 let contents = viewController.textView.string ?? ""

First, you attempt to get the contents of the text view via the string property, the same way you
did inside ViewController to get the text to synthesize. If string is nil, you use the nil-coalescing
operator that you saw in Chapter 8 to use a default of "", the empty string.

From the Library of wu yuan

ptg16315837

Loading documents

339

 if let data = contents.dataUsingEncoding(NSUTF8StringEncoding) {
 return data

Next, you use dataUsingEncoding(_:) on a string to attempt to convert contents into an NSData. The
dataUsingEncoding(_:) method requires you to specify a string encoding – that is, how to convert the
text inside contents into bytes. NSUTF8StringEncoding is a constant that specifies UTF8, a common
Unicode encoding.

 } else {
 let userInfo = [
 NSLocalizedRecoverySuggestionErrorKey:
 "File cannot be encoded in UTF-8."
]
 throw NSError(
 domain: "com.bignerdranch.VocalTextEdit", code: 0, userInfo: userInfo)
 }

Finally, you have to handle the error case: what do you do if the string cannot be encoded in UTF8?
You could define an enumeration that conforms to ErrorType and throw an instance of that as you did
in Chapter 20. In this case, though, Cocoa will do some extra work for you if you throw an instance of
NSError. If file-saving fails, an alert will pop up to the user. If you used an ErrorType enum, the alert
would contain a generic failure message as you saw in Figure 26.22. By supplying an NSError, you can
supply an additional error message that will be displayed in the alert.

NSError was the standard mechanism for handling errors in Objective-C. It is much more cumbersome
to use than defining ErrorType enumerations, as you see here, but it still useful. You create an NSError
by supplying three pieces of information:

• a domain, which is a string

• a code, which is an integer

• userInfo, which is a dictionary that can contain multiple keys and values describing the error

In small applications, it is common to use a single custom error domain. The code can help you
differentiate error cases. In this app, there are not many opportunities for error, so you are not going to
supply codes. Finally, the userInfo dictionary allows you to give detail. Arguably the most important
key to include is NSLocalizedRecoverySuggestionErrorKey, whose value should be a (localized)
string giving the user information about how they could fix the problem. You cheated a little bit by
using an English string, but localization is outside the scope of this book.

Build and run your application. Type some text into a document, then save it. Success! Well, almost.
Close the document you saved, and try to open it via File → Open.

No dice. You can save documents, but you still need to implement readFromData(_:ofType) to load
them.

Loading documents
When you saved the document, you got the contents from the view controller’s text view, converted
the string to an NSData, and returned the data. To load a document, it would make sense to perform the
inverse: you are given an NSData, so you need to convert it to a string and then put the contents into the

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

340

view controller’s text view. Try the following, which might look correct at first glance, but actually has
a major problem.

Listing 26.11 Loading a document – the wrong way (Document.swift)
...
 override func readFromData(data: NSData, ofType typeName: String) throws {
 // Insert code here to read your document
 // from the given data of the specified type...
 throw NSError(domain: NSOSStatusErrorDomain, code: unimpErr, userInfo: nil)
 if let contents = NSString(data: data, encoding: NSUTF8StringEncoding)
 as? String {
 // WARNING: BIG PROBLEM HERE
 let windowController = windowControllers[0]
 let viewController = windowController.contentViewController
 as! ViewController
 viewController.textView.string = contents
 return true
 } else {
 let userInfo = [
 NSLocalizedRecoverySuggestionErrorKey: "File is not valid UTF-8."
]
 throw NSError(
 domain: "com.bignerdranch.VocalTextEdit", code: 0, userInfo: userInfo)
 }
 }

Build and run your application. Close all the windows, then try to open the document you saved a few
minutes ago. Uh-oh: your application crashed on the line where you try to assign the contents to the
view controller. You get the following error message:

fatal error: Array index out of range

“Array index out of range” is telling you that when you tried to get element 0 from the
windowControllers array, it did not exist. Why doesn’t it exist? Cocoa calls readFromData(_:ofType)
before it creates the window and its associated controllers, so the document does not yet have a
window controller or a view controller.

So that implementation, while logical on the surface, does not work. Instead, you can save off the
string and then update the view controller’s contents once it is loaded from the storyboard. Start by
creating a new property to hold the contents that will be filled in when the view controller is available.

Listing 26.12 Loading a document a better way – creating a contents property
(Document.swift)
class Document: NSDocument {

 var contents: String = ""

 override class func autosavesInPlace() -> Bool {
 return true
 }

 ...
}

From the Library of wu yuan

ptg16315837

Loading documents

341

You can default the contents to an empty string, because that is the correct value for brand-new
Documents that are not the result of opening a file. Next, modify readFromData(_:ofType:) to store
into this property instead of attempting to update a view controller that does not exist.

Listing 26.13 Loading a document a better way – storing the contents property
(Document.swift)
...
 override func readFromData(data: NSData, ofType typeName: String) throws {
 if let contents = NSString(data: data, encoding: NSUTF8StringEncoding)
 as? String {
 // WARNING: BIG PROBLEM HERE
 let windowController = windowControllers[0]
 let viewController = windowController.contentViewController
 as! ViewController
 viewController.textView.string = contents
 self.contents = contents
 return true
 } else {
 let userInfo = [
 NSLocalizedRecoverySuggestionErrorKey: "File is not valid UTF-8."
]
 throw NSError(
 domain: "com.bignerdranch.VocalTextEdit", code: 0, userInfo: userInfo)
 }
 }

Finally, you need to forward the document contents on to the view controller when it is created. Update
makeWindowControllers() to do just that.

Listing 26.14 Loading a document a better way – forwarding document contents to
view controller (Document.swift)
...
 override func makeWindowControllers() {
 // Returns the Storyboard that contains your Document window.
 let storyboard = NSStoryboard(name: "Main", bundle: nil)
 let windowController =
 storyboard.instantiateControllerWithIdentifier(
 "Document Window Controller"
) as! NSWindowController

 let viewController = windowController.contentViewController as! ViewController
 viewController.textView.string = contents

 self.addWindowController(windowController)
 }
...

Build and run the application. Now you can successfully open files! VocalTextEdit is nearly complete.

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

342

MVC cleanup
VocalTextEdit is now feature-complete: it can save and load documents, and it can read them back
to you. But before you say it is completely finished, think back to something we said about MVC:
“Models have no knowledge of the user interface.” You are using Document as a model class, but it
reaches out and touches a text view in a couple of different places. A text view is definitely part of the
user interface!

The ViewController should be the class coordinating between the user interface (the text view) and
the model (the document). For the sake of good programming, clean up VocalTextEdit’s layers. Start by
opening up ViewController.swift and creating a new property for the contents of the text view.

Listing 26.15 Creating a new property for the text view’s contents
(ViewController.swift)
class ViewController: NSViewController {

 let speechSynthesizer = NSSpeechSynthesizer()

 @IBOutlet var textView: NSTextView!

 var contents: String? {
 get {
 return textView.string
 }
 set {
 textView.string = newValue
 }
 }

 ...

}

Here, you create a new computed property, contents, whose getter and setter read from and write to
textView’s string property.

From the Library of wu yuan

ptg16315837

MVC cleanup

343

Now, back in Document.swift, replace both of the references to the view controller’s text view with
this new property.

Listing 26.16 Replacing text view references with contents (Document.swift)
...
 override func makeWindowControllers() {
 // Returns the Storyboard that contains your Document window.
 let storyboard = NSStoryboard(name: "Main", bundle: nil)
 let windowController =
 storyboard.instantiateControllerWithIdentifier(
 "Document Window Controller"
) as! NSWindowController

 viewController = windowController.contentViewController as! ViewController
 viewController.textView.string = contentscontents = contents

 self.addWindowController(windowController)
 }

 override func dataOfType(typeName: String) throws -> NSData {
 let windowController = windowControllers[0]
 let viewController = windowController.contentViewController as! ViewController

 let contents = viewController.textView.stringcontents ?? ""

 if let data = contents.dataUsingEncoding(NSUTF8StringEncoding) {
 return data
 } else {
 let userInfo = [
 NSLocalizedRecoverySuggestionErrorKey:
 "File cannot be encoded in UTF-8."
]
 throw NSError(
 domain: "com.bignerdranch.VocalTextEdit", code: 0, userInfo: userInfo)
 }
 }
 ...

Build and run VocalTextEdit and confirm that you can still save and load files as expected.

The refactoring of the code you just did may seem small, but it is an important change. Document
does not, and should not, care how the string is going to be displayed. The ViewController class is
responsible for managing the user interface (so it knows about the text view) and for communicating
with the document (so it exposes what the document needs: a contents property).

This change has a couple of benefits aside from good programming practice. One is that Document
is more readable now, because the code more directly expresses your intention. To save a document,
get the contents from the view controller and save them. To load a document, put the contents into a
property and give them to a view controller as soon as you can.

The second extra benefit is that the refactored code makes Document more robust to potential future
changes in the view controller. You might decide to add a second text view for users to type in a
document title, for example, or you might decide to use a different view than a text view. Changes of
that nature are less likely to impact the readability and correctness of Document now that you have
clarified its interactions with ViewController.

From the Library of wu yuan

ptg16315837

Chapter 26 Your First Cocoa Application

344

Congratulations – you have written an app for the Mac! It may not be the most impressive app, but
that is not the point. You have applied your knowledge of Swift and made use of some of the Cocoa
libraries provided by Apple. And you have made a fully functional, well-designed app. Bravo!

As you worked through this chapter, your programmer Spidey-sense may have tingled a little bit at
some of the techniques you used. Implicitly unwrapped optionals can be dangerous. The as! operator
can be dangerous. You made frequent use of both of these.

Unfortunately, the purity and safety of Swift is not always available when you start working with tools
and frameworks that were designed with Objective-C in mind. Some concessions have to be made,
particularly when working with the systems built up around Interface Builder. Take heart, however: in
a larger application, the parts of your code that feel a little shaky will be well offset by the safety and
security you get from using Swift throughout the rest of the app.

Silver Challenge
Right now, users of VocalTextEdit can click the Speak or Stop buttons at any time. That is not ideal:
clicking Speak while VocalTextEdit is currently synthesizing will abruptly restart the vocalization, for
example. Modify VocalTextEdit so that users can only click on Speak if the application is not currently
synthesizing, and only click Stop when it is.

To complete this challenge, you will need a way to set the enabled property of the two buttons. You
will also need a way to know when speaking ends. (You already know when it starts.) Investigate the
documentation for the NSSpeechSynthesizerDelegate protocol to find out how to do these things.

Gold Challenge
If you have not already completed the silver challenge, do that first!

Now that your buttons react when the app starts or stops speaking, give the user a way to know how
long speaking will continue. Add an NSProgressIndicator to your interface and update it to show
a rough estimate of how much speaking has been completed. For bonus points, make the progress
indicator visible only when the app is speaking.

From the Library of wu yuan

ptg16315837

345

27
Your First iOS Application

In this chapter, you are going to create iTahDoodle, an iOS application for iPhone. iTahDoodle will
allow users to create to-do lists. Like VocalTextEdit, iTahDoodle is a relatively simple app, and building
it will give you only a taste of what iOS development is all about.

When you are done, iTahDoodle will look like Figure 27.1.

Figure 27.1 Completed iTahDoodle application

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

346

Users can add an item to the to-do list by typing in the text field at the top and tapping Insert. You will
persist the to-do list so that users will not lose their list if they close the application.

Getting Started with iTahDoodle
In Xcode, choose File → New → Project.... Select Application under the iOS section. Select the Single
View Application template (Figure 27.2) and click Next.

Figure 27.2 Choosing the iOS Single View Application template

From the Library of wu yuan

ptg16315837

Getting Started with iTahDoodle

347

In the project options window, name the project iTahDoodle, as in Figure 27.3. Make sure the selected
language is Swift and the device is set to iPhone. Leave the Use Core Data, Include Unit Tests, and
Include UI Tests boxes unchecked.

Figure 27.3 Configuring iTahDoodle

Click Next and finish creating your project saving it to the location of your choice.

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

348

Laying Out the User Interface
Select Main.storyboard from the project navigator. The iOS single view application template is much
simpler than the Cocoa storyboard you used in the previous chapter. Your storyboard currently contains
only a single, empty view controller.

Add a button to your view controller. In the object library (at the bottom of the utilities pane), search
for “button.” Drag a Button onto your view controller canvas and drop it in the top-right corner where it
will snap into place against the dashed blue guidelines. Finally, change the title of the button to “Insert”
in the attributes inspector. The attributes inspector is one tab of the utilities pane, and it allows you to
configure properties of views. Your view controller should look like Figure 27.4.

Figure 27.4 iTahDoodle with Insert button

From the Library of wu yuan

ptg16315837

Laying Out the User Interface

349

Next, add the text field where users will type in their to-do items. Search for “text field” in the object
library. Drag a Text Field into the top-left corner of your view controller canvas. Resize the text field
using the square resize anchor so that its right edge is adjacent to the button you added. Use the
attributes inspector to set the text field’s placeholder text to “To-do Item” (Figure 27.5).

Figure 27.5 iTahDoodle with a text field

In the previous chapter, you used Auto Layout to make sure your interface would look correct when the
user resized the window. Currently, users cannot resize the windows of iOS applications, but there is a
comparable problem. You want your app to look correct on a variety of screen sizes. Specifying iPhone
as the target device (as you did when you set up iTahDoodle) is not enough, as iPhone 5, iPhone 6, and
iPhone 6 Plus all have different screen sizes. However, you can use the same Auto Layout system to
ensure that your interface adjusts to fit correctly on each screen size.

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

350

In the document outline, Control-drag from Insert to its parent, View. In the pop-up menu, Shift-click
on both Trailing Space to Container Margin and Vertical Spacing to Top Layout Guide (Figure 27.6).

Figure 27.6 Auto Layout constraints for Insert button

These constraints will ensure that the button stays pinned to the top-right corner of the view.

From the Library of wu yuan

ptg16315837

Laying Out the User Interface

351

Next, create constraints between the text field and the button. Control-drag from the text field to the
button. In the pop-up menu, Shift-click on both Horizontal Spacing and Baseline (Figure 27.7). (You
may notice a yellow icon indicating a warning in Interface Builder – you will address it momentarily.)

Figure 27.7 Auto Layout constraints between text field and button

These constraints will ensure that the right side of the text field stays next to the button and that the text
in the text field will be vertically aligned with the button’s text.

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

352

The final constraint to add is to pin the left edge of the text field to the left edge of the view. In the
document outline, Control-drag from the text field to its parent view and select Leading Space to
Container Margin from the pop-up (Figure 27.8).

Figure 27.8 Auto Layout constraint between text field and superview

From the Library of wu yuan

ptg16315837

Laying Out the User Interface

353

You may notice that Interface Builder still has a warning. Press Command-4 to open the issue
navigator, where you will see “2 views are horizontally ambiguous.” The problem is that you have
constrained the text field and button together to fill up the entire horizontal space, but Auto Layout
does not know how to divide the space. According to the constraints you have added, Auto Layout
could make the button skinny and the text field wide or vice versa (or anything in between). To fix this
problem, select the button, open up its size inspector in the utilities pane, and set its Horizontal Content
Hugging Priority to be 251 instead of 250 (Figure 27.9).

Figure 27.9 Insert button horizontal content hugging priority

The content hugging priority determines how strongly Auto Layout should attempt to keep an element
from expanding. You bumped the button’s content hugging priority up to 251, higher than the text
field’s default of 250. When Auto Layout tries to determine how to fill the entire horizontal space, it
will see that the button does not want to expand horizontally. Therefore, the text field will grow to fill
the available space, leaving the button the same size.

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

354

The final UI element you need is a way to display the list of to-do items. iOS provides a perfect class
for this purpose: the UITableView. Search for “table” in the object library and drag a Table View
onto your view controller (make sure you grab the Table View, not the Table View Controller), as in
Figure 27.10.

Figure 27.10 Adding a table view

From the Library of wu yuan

ptg16315837

Laying Out the User Interface

355

Resize the table view until it snaps into place around the edges (Figure 27.11).

Figure 27.11 Resize table view to fill view controller

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

356

You need to add Auto Layout constraints to make sure the table view always fills the available screen
space. In the document outline, Control-drag from table view to its parent, view. In the pop-up menu,
Shift-click on Leading Space to Container Margin, Trailing Space to Container Margin, and Vertical
Spacing to Bottom Layout Guide (Figure 27.12).

Figure 27.12 Auto Layout constraints between table view and superview

From the Library of wu yuan

ptg16315837

Laying Out the User Interface

357

Finally, add a constraint to fix the spacing between the table view and the text field just above it.
Control-drag from the table view to the text field and select Vertical Spacing from the pop-up menu
(Figure 27.13).

Figure 27.13 Auto Layout constraints between table view and text field

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

358

Build and run your application by clicking on the triangular play button in Xcode's toolbar. (You can
also use the keyboard shortcut Command-R.) This will open iTahDoodle in Xcode's iOS simulator, as
shown in Figure 27.14. It does not do anything yet, but you should see the user interface you designed.

Figure 27.14 iTahDoodle user interface

Wiring up your interface
Now that you have an interface, it is time to create outlets and actions so that you can start to make
your app interactive. Open ViewController.swift and add properties for your UI elements and an
action method to call when the user taps the Insert button.

From the Library of wu yuan

ptg16315837

Wiring up your interface

359

Listing 27.1 Adding UI element properties and a button action method
(ViewController.swift)
class ViewController: UIViewController {

 @IBOutlet var itemTextField: UITextField!
 @IBOutlet var tableView: UITableView!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func addButtonPressed(sender: UIButton) {
 print("Add to-do item: \(itemTextField.text)")
 }
}

Next, go back to Main.storyboard and create connections to the items you just added. Control-drag
from the view controller to the text field, selecting itemTextField from the pop-up menu (Figure 27.15).

Figure 27.15 Connecting text field to view controller @IBOutlet

Repeat the same process to connect the table view. Control-drag from the view controller to the table
view and select tableView from the pop-up menu.

Remember from Chapter 26 that to connect an action you Control-drag in the opposite direction?
Control-drag from the Insert button to the view controller and select addButtonPressed: underneath
Sent Events in the pop-up menu (Figure 27.16).

Figure 27.16 Connecting Insert button to view controller @IBAction

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

360

Build and run your application again. Try typing in the text field and tapping the Insert button. Your
text logs in Xcode:

Add to-do item: Buy groceries
Add to-do item: Walk the dog

Modeling a To-Do List
Recall from Chapter 26 that iOS and Mac applications usually follow a Model-View-Controller
architecture. You have already created a view (your storyboard and UI elements) and a controller
(your ViewController class). At this point, however, you do not have a model. Create a Cocoa Touch
class by selecting File → New → File.... Select Source under iOS, then select Cocoa Touch Class
(Figure 27.17).

Figure 27.17 Creating a new Cocoa Touch class

From the Library of wu yuan

ptg16315837

Modeling a To-Do List

361

On the next screen, name your class TodoList, make it a subclass of NSObject, and make sure the
language is set to Swift (Figure 27.18).

Figure 27.18 Creating the TodoList class

Click Next, then Create.

Xcode creates and opens your new class:

class TodoList: NSObject {

}

What is NSObject? In Swift, you can create classes that do not have a superclass. In Objective-C,
all classes are required to have a superclass. NSObject is called a root class: it provides some basic
Objective-C runtime support.

You need TodoList to inherit from NSObject because you are going to use it to interact with Cocoa
Touch classes that expect to receive Objective-C objects. (The relationship between Swift and
Objective-C is the subject of Chapter 28.)

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

362

At its most basic, a to-do list is just a list of strings with the capability to add new things to the list.
Add a property and a method to TodoList to meet those requirements.

Listing 27.2 Adding basic list functionality (TodoList.swift)
class TodoList: NSObject {
 private var items: [String] = []

 func addItem(item: String) {
 items.append(item)
 }
}

Earlier you placed a UITableView into your interface to display your to-do list. Every UITableView
has a property named dataSource that provides the content for its cells. To act as a table view’s
data source, TodoList must conform to the UITableViewDataSource protocol. As you learned
in Chapter 21, you can add protocol conformance in an extension to keep related chunks of
functionality grouped together. Add an extension on TodoList declaring that it conforms to
UITableViewDataSource.

Listing 27.3 Adding protocol conformance in an extension (TodoList.swift)
class TodoList: NSObject {
 private var items: [String] = []

 func addItem(item: String) {
 items.append(item)
 }
}

extension TodoList: UITableViewDataSource {
}

From the Library of wu yuan

ptg16315837

Modeling a To-Do List

363

If you were to try to build your project now, you would get an error that TodoList does not conform
to UITableViewDataSource. Open the documentation for UITableViewDataSource (Figure 27.19).
(Recall from Chapter 26 that you Option-click on UITableViewDataSource to bring up the quick
reference, then click on the UITableViewDataSource Protocol Reference link to bring up the full
documentation.)

Figure 27.19 UITableViewDataSource protocol reference

There are a lot of methods in the UITableViewDataSource protocol! However, only two of them are
required: tableView(_:cellForRowAtIndexPath:), which configures and returns cells (the rows of
your table view), and tableView(_:numberOfRowsInSection:), which tells the table view how many
rows there are going to be. Begin by implementing tableView(_:numberOfRowsInSection:).

Listing 27.4 Adding tableView(_:numberOfRowsInSection:)
(TodoList.swift)
...
extension TodoList : UITableViewDataSource {
 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return items.count
 }
}

UITableView supports a table having multiple sections, each of which can have 0 or more rows. For
iTahDoodle, you are only going to use a single section, so in the method above, you ignore the section

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

364

argument. You return items.count, telling the table view that there will be one row for each to-do list
item.

Next, implement tableView(_:cellForRowAtIndexPath:).

Listing 27.5 Adding tableView(_:cellForRowAtIndexPath:)
(TodoList.swift)
...
extension TodoList : UITableViewDataSource {
 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return items.count
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
 forIndexPath: indexPath)
 let item = items[indexPath.row]

 cell.textLabel!.text = item

 return cell
 }
}

Here is a line-by-line walk-through of what this method does:

let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
 forIndexPath: indexPath)

This line asks the table view to dequeue a reusable cell with the identifier “Cell” and the given index
path.

What does reusable cell mean? In order to achieve good scrolling performance on mobile devices,
UITableView makes use of a reuse pool of cells. When cells are no longer needed by the system, such
as when the user scrolls and cells “fall off” the screen, the table view puts that cell into its reuse pool.
If the table view has a cell in the reuse pool, it will give that one to you, dequeueing it from the pool.
Otherwise, it will create a new one. Either way, you are guaranteed to get an instance back.

Keep the "Cell" identifier and the cast to UITableViewCell in the back of your mind. We will revisit
them shortly.

let item = items[indexPath.row]

The tableView(_:cellForRowAtIndexPath:) method is called every time the table view needs the
data source to configure a cell that will be displayed to the user. The indexPath argument indicates
which row the table view needs to display. It contains properties for both a section and a row. As
mentioned above, the iTahDoodle table view only has one section, so you can ignore the section and
just look up which item to display based on the row.

cell.textLabel!.text = item

From the Library of wu yuan

ptg16315837

Setting Up the UITableView

365

Now that you have both a UITableViewCell and the to-do list item you want to display, this line sets
the text property of the cell’s textLabel to be equal to the to-do list item. You are force-unwrapping
textLabel; not all UITableViewCells are guaranteed to have a textLabel, but the one you are using
does.

return cell

Finally, the method returns the fully configured cell.

Your TodoList is now ready to act as a data source for a UITableView. Build your application to make
sure you implemented all the methods correctly. You will not see any new behavior yet, because you
still need to set up the table view. But you should not see any errors.

Setting Up the UITableView
Your model class is now ready. Return to your controller in ViewController.swift. Add an instance
of TodoList as a new property and change addButtonPressed(_:) to add items to todoList instead of
printing them.

Listing 27.6 Adding the model class to the controller as a property
(ViewController.swift)
class ViewController: UIViewController {

 @IBOutlet var itemTextField: UITextField!
 @IBOutlet var tableView: UITableView!

 let todoList = TodoList()

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func addButtonPressed(sender: UIButton) {
 print("Add to-do item: \(itemTextField.text)")
 guard let text = itemTextField.text else {
 return
 }
 todoList.addItem(text)
 }
}

You used a guard statement to check that itemTextField.text is not nil, storing the string into text
for use in the rest of the method. If itemTextField.text is nil, you just return – there is nothing to add
to the to-do list.

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

366

Next, you need to configure the table view. The Xcode template that you used to create your project
includes a comment directing you where to “do any additional setup after loading the view”: inside
viewDidLoad(). (The “nib” that the comment refers to is the format your storyboard is compiled into
when you build your application.) Add two lines to configure your table view.

Listing 27.7 Configuring the table view (ViewController.swift)

class ViewController: UIViewController {

 @IBOutlet var itemTextField: UITextField!
 @IBOutlet var tableView: UITableView!

 let todoList = TodoList()

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 tableView.registerClass(UITableViewCell.self, forCellReuseIdentifier: "Cell")
 tableView.dataSource = todoList
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func addButtonPressed(sender: UIButton) {
 guard let text = itemTextField.text else {
 return
 }
 todoList.addItem(text)
 }
}

The first line you added tells the table view what to do when the data source tries to dequeue a reusable
cell with the identifier "Cell" (which is the identifier you used in TodoList). Specifically, it registers
the class UITableViewCell, which tells the table view to create instances of UITableViewCell. The
second line tells the table view that the todoList is its data source.

There is one more step to finish the controller. Whenever the data source changes, the table view needs
to be notified. In addButtonPressed(_:), tell the table view to reload its data after you add the new
item to the to-do list:

From the Library of wu yuan

ptg16315837

Saving and Loading TodoList

367

Listing 27.8 Notifying the view to reload data (ViewController.swift)

class ViewController: UIViewController {

 @IBOutlet var itemTextField: UITextField!
 @IBOutlet var tableView: UITableView!

 let todoList = TodoList()

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 tableView.registerClass(UITableViewCell.self, forCellReuseIdentifier: "Cell")
 tableView.dataSource = todoList
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func addButtonPressed(sender: UIButton) {
 guard let text = itemTextField.text else {
 return
 }
 todoList.addItem(text)
 tableView.reloadData()
 }
}

Build and run your application. Type in your text field and tap Insert. You should see items populate
the table view below.

Saving and Loading TodoList
iTahDoodle is now functional. Unfortunately, it forgets the to-do list every time the app is launched.
You need to add the ability for TodoList to save and load its state.

Saving TodoList
In Chapter 26, you implemented document saving and loading by taking advantage of features of
the NSDocument class. Document-based Mac apps follow patterns (both in the code and the user
interface) that have existed for years in Mac OS X. Most iOS apps, on the other hand, do not operate
on documents. iTahDoodle definitely does not – there is a single to-do list, and the user will expect it to
stick around.

All iOS applications live inside of an application sandbox. This means that your app cannot see files
created by other applications, and vice versa. Another side effect of the sandbox is that the directories
you should use to store files can change. Because you want to save a file containing the contents of
the to-do list, the first thing you need is to ask iOS where you should store files. Add a new property,
computed from a closure, to TodoList.

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

368

Listing 27.9 Asking iOS where to store files (TodoList.swift)
import UIKit

class TodoList: NSObject {
 private let fileURL: NSURL = {
 let documentDirectoryURLs = NSFileManager.defaultManager().URLsForDirectory(
 .DocumentDirectory, inDomains: .UserDomainMask)
 let documentDirectoryURL = documentDirectoryURLs.first!
 return documentDirectoryURL.URLByAppendingPathComponent("todolist.items")
 }()

 private var items: [String] = []

 func addItem(item: String) {
 items.append(item)
 }
}
...

The first line of the closure asks the default NSFileManager (a class that lets you interact with iOS’s
filesystem) to give you an array of URLs containing the user’s document directories. The next line gets
the first element out of the returned array, making use of force-unwrapping because iOS will always
return the app’s documents directory in the array. Finally, you return a new URL that contains the
filename todolist.items appended to the user’s documents directory.

Next, add a method to actually save the to-do list items.

Listing 27.10 Saving the to-do list (TodoList.swift)
class TodoList: NSObject {
 private let fileURL: NSURL = {
 let documentDirectoryURLs = NSFileManager.defaultManager().URLsForDirectory(
 .DocumentDirectory, inDomains: .UserDomainMask)
 let documentDirectoryURL = documentDirectoryURLs.first!
 return documentDirectoryURL.URLByAppendingPathComponent("todolist.items")
 }()

 private var items: [String] = []

 func saveItems() {
 let itemsArray = items as NSArray

 print("Saving items to \(fileURL)")
 if !itemsArray.writeToURL(fileURL, atomically: true) {
 print("Could not save to-do list")
 }
 }

 func addItem(item: String) {
 items.append(item)
 saveItems()
 }
}
...

The saveItems() method first gets the URL using the function you just wrote. Next, you cast
the items array into an NSArray. This is so you can call a method that exists on NSArrays but
not Swift arrays. You then call that method – writeToURL(_:atomically:) – on NSArray.

From the Library of wu yuan

ptg16315837

Loading TodoList

369

writeToURL(_:atomically:) attempts to save the contents of the array to the given URL, and it
returns a Bool indicating whether it succeeded.

You also add a call to saveItems() in addItem(_:). Saving the full item list every time you add a new
item is not ideal. It would be better to only save the items when the app is about to close, but for the
purposes of iTahDoodle, saving after every addition is fine.

Build and run your application. Add some items to the to-do list. You should see a logged message
after each addition documenting that the to-do list has been saved.

Loading TodoList
Loading saved to-do lists uses many of the same features as saving them. Add a loadItems() method
to TodoList.

Listing 27.11 Loading a saved to-do list (TodoList.swift)
class TodoList: NSObject {
 private let fileURL: NSURL = {
 let documentDirectoryURLs = NSFileManager.defaultManager().URLsForDirectory(
 .DocumentDirectory, inDomains: .UserDomainMask)
 let documentDirectoryURL = documentDirectoryURLs.first!
 return documentDirectoryURL.URLByAppendingPathComponent("todolist.items")
 }()

 private var items: [String] = []

 func saveItems() {
 let itemsArray = items as NSArray

 print("Saving items to \(fileURL)")
 if !itemsArray.writeToURL(fileURL, atomically: true) {
 print("Could not save to-do list")
 }
 }

 func loadItems() {
 if let itemsArray = NSArray(contentsOfURL: fileURL) as? [String] {
 items = itemsArray
 }
 }

 func addItem(item: String) {
 items.append(item)
 saveItems()
 }
}
...

The loadItems() method first grabs the same file URL that you saved the items to in saveItems().
Next, you attempt to construct an NSArray using its initializer, which expects a URL from which the
array should be loaded. If the array can be constructed and you can cast the array to [String], you
store it in TodoList’s items property.

You can now load the saved to-do list, but when should you do so? The simplest answer is to attempt
to load the saved items when you first create a TodoList. So far, you have been taking advantage of the
no-argument initializer provided automatically, but now you need to write an explicit initializer.

From the Library of wu yuan

ptg16315837

Chapter 27 Your First iOS Application

370

Listing 27.12 Adding an explicit initializer (TodoList.swift)
class TodoList: NSObject {
 private let fileURL: NSURL = {
 let documentDirectoryURLs = NSFileManager.defaultManager().URLsForDirectory(
 .DocumentDirectory, inDomains: .UserDomainMask)
 let documentDirectoryURL = documentDirectoryURLs.first!
 return documentDirectoryURL.URLByAppendingPathComponent("todolist.items")
 }()

 private var items: [String] = []

 override init() {
 super.init()
 loadItems()
 }

 ...
}
...

You add a new init() method that overrides NSObject’s initializer. In the implementation, you call the
superclass initializer, which you are required to do before you access self in any way (for example,
by calling methods). Finally, you attempt to load the saved items. If loading fails, the TodoList will be
created with an empty items array.

And with that, you are now the proud author of your first iOS application! There is much more to learn
about iOS development. This chapter has just been a small taste of what awaits you.

Bronze Challenge
There are a couple of small – but annoying – bugs in iTahDoodle. First, when you add a new item to
the to-do list, the text field is not cleared: it keeps the text you just added to the list. Second, you are
able to add empty rows to the to-do list by tapping Insert when the text field is empty. Fix both of these
bugs.

Silver Challenge
Your ViewController class is currently taking on a little too much responsibility. When it is setting
up the table view, the view controller is registering the cell class and reuse identifier, but TodoList is
the class that actually wants to use the created cells. Fix this problem by coming up with a way for
ViewController to successfully set up the table view without having to know the details of what kind
of cells TodoList is going to want.

Gold Challenge
There is a pretty glaring omission in iTahDoodle: the user cannot remove items! Make it possible for
users to remove an item by tapping on it. You already know enough to update TodoList. Here is a hint
about how to detect when the user taps on a row: make your view controller the table view’s delegate.
This will require conforming to the UITableViewDelegate protocol. UITableViewDelegate has a
method that will be very useful for this challenge: tapping on a row results in selection of that row.

From the Library of wu yuan

ptg16315837

371

28
Interoperability

Because Swift is a very new language, it will be common in your Mac and iOS development career
to work on an existing project implemented in Objective-C. After all, there are many years of Mac
and iOS development behind us at this point. If you want to continue development using Swift on
projects originally developed in Objective-C, you will need to learn how to make the two languages
work together.

This chapter will show you exactly that. If you are not familiar with Objective-C, just follow along and
type in the code. Not knowing Objective-C will not stop you from understanding the basic mechanics
of interoperability. If you would like to learn more about Objective-C, check out the latest edition of
Objective-C Programming: The Big Nerd Ranch Guide.

In addition to adding Swift code to an existing Objective-C project, you may need to use the two
languages together if you have a Swift project that needs to either interact with the Cocoa or Cocoa
Touch SDKs or take advantage of Objective-C.

As you saw in Chapter 26 and Chapter 27, all Mac and iOS apps will need to interact with the Cocoa
or Cocoa Touch frameworks. These frameworks provide the basic building blocks for developing
Mac and iOS apps, and are mostly written in Objective-C. So using them means interoperating with
Objective-C, which affects how you write Swift code.

To see how this works, you will start by writing a small application in Objective-C. Next, you will add
a Swift file to that project to define a Swift class and use it in an Objective-C file. Finally, you will
create another Objective-C class and use that class in your Swift code.

An Objective-C Project
To illustrate interoperability, you are going to create a simple version of the iOS Contacts application.
The project will begin in Objective-C, and later you will incorporate some new Swift code.

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

372

Create a new Xcode project. Choose the Single View Application template under the iOS label
(Figure 28.1).

Figure 28.1 The Single View Application template

From the Library of wu yuan

ptg16315837

An Objective-C Project

373

Name the project Contacts and make sure that the language selection is Objective-C (Figure 28.2).

Figure 28.2 Setting project options

Click Next, choose a location to save your project, and click Create.

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

374

Creating a contacts app
Begin your simple contacts organizer application by adding a table to your main view in the
storyboard. This table will hold a list of hardcoded contacts. Remember, a storyboard is an interface
provided by Xcode that allows you to manage your views and their relationships.

Open Main.storyboard. Your first step is to delete the view controller that came with the template, as
you will not be using it. Select the view controller in the document outline (Figure 28.3).

Figure 28.3 Deleting a view controller scene

With the view controller selected, press Delete.

Deleting this scene was a necessary step, but it introduced a problem. The scene that you deleted
was the application’s point of entry upon launch. Therefore, your app no longer has an initial view to
display.

In fact, if you try to build and run your application now, you will see the following message log to the
console: "Failed to instantiate the default view controller for UIMainStoryboardFile
'Main' - perhaps the designated entry point is not set?" Fix this problem by adding a new
default view controller.

Open the object library and search for “table.” Drag a Table View Controller onto your storyboard’s
canvas.

You have now added a new view controller to your storyboard, but you have not yet made it the default.
Select the table view controller and open the attributes inspector. Check the box to make the table view
controller the Initial View Controller (Figure 28.4).

From the Library of wu yuan

ptg16315837

Creating a contacts app

375

Figure 28.4 The attribute inspector

Try running your app now: no error, just an empty table view. To display data in this table view, you
need to give the table view a data source, as you saw in Chapter 27.

The first step is to associate the table view controller scene with the ViewController class that the
template provided. This class was originally associated with the scene that you deleted. Because this
relationship was broken when you deleted the view controller’s scene, you need to associate this class
with the UITableViewController in the storyboard. (You could create a brand-new view controller
class, but it is simpler to adapt the one that was provided by the template.)

Your first step in adapting the class will be to change its name from the overly generic ViewController
to ContactsViewController. This name more concretely describes its purpose. Click on
ViewController.h in the project navigator. Its contents should look like this:

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@end

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

376

To rename the class, right-click on ViewController and select Refactor → Rename... from the pop-
up. In the sheet that pops up, change ViewController to ContactsViewController, as shown in
Figure 28.5.

Figure 28.5 Renaming ViewController

Click Preview, and the sheet will expand to display the changes that will be made. Click Save. (If
Xcode asks you if you would like to enable snapshotting, click Enable to proceed.)

Now that your class has a more specific name, the next step is to change its superclass to be
UITableViewController, the kind of controller you added to your storyboard.

Listing 28.1 Changing the superclass (ContactsViewController.h)
#import <UIKit/UIKit.h>

@interface ContactsViewController : UIViewController UITableViewController

@end

Now that you have adapted this view controller, you can put it to work. It will be responsible for
populating the app’s table view with contacts. Your class ContactsViewController inherits from
UITableViewController, which makes it ideal for displaying lists. In this case, you want to display a
list of contact names.

From the Library of wu yuan

ptg16315837

Creating a contacts app

377

To make contact names display in the table view, the table view controller will need to know what
contacts should be displayed and it will need to serve as the table view’s data source.

UITableViewController conforms to the UITableViewDataSource protocol. Conformance requires
that you implement two methods, but before you do this you will create an array containing some
hardcoded strings for contact names. Switch to ContactsViewController.m to add a property for this
array in the class extension. Give this array some data in initWithCoder:.

Listing 28.2 Hardcoding contact names (ContactsViewController.m)

#import "ContactsViewController.h"

@interface ContactsViewController ()

@property (nonatomic, readonly, strong) NSMutableArray *contacts;

@end

@implementation ContactsViewController

- (id)initWithCoder:(NSCoder *)aDecoder {
 self = [super initWithCoder:aDecoder];
 if (self) {
 NSArray *contactArray = @[@"Johnny Appleseed",
 @"Paul Bunyan",
 @"Calamity Jane"];
 _contacts = [NSMutableArray arrayWithArray:contactArray];
 }
 return self;
}

- (void)viewDidLoad {
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

@end

This mutable array, named contacts, contains a small list of strings for contacts that you will display
on the table view. In order to get these names in the table, you will need to implement the required
methods in the UITableViewDataSource protocol. Add the following method implementations to
populate the table with data.

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

378

Listing 28.3 Implementing required methods for protocol conformance
(ContactsViewController.m)
...

- (void)viewDidLoad {
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
 [self.tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"UITableViewCell"];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return self.contacts.count;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:@"UITableViewCell"
 forIndexPath:indexPath];

 NSString *contact = self.contacts[indexPath.row];

 cell.textLabel.text = contact;

 return cell;
}

Here, you register the UITableViewCell class with the table view controller’s tableView
property so the table view knows how to create new cells and reuse existing ones. Next, you
use the contacts property to determine the number of rows the table view needs to provide
in tableView:numberOfRowsInSection:. You also ask the table view for an instance of
UITableViewCell, if necessary, in tableView:cellForRowAtIndexPath:. In this data source method,
you use the current indexPath to put the appropriate contact name in the cell instance. Finally, you
return the cell to display it in the table view.

Build and run the application. Your contact names are not displayed on the table. You made
ContactsViewController the table view’s data source and gave it contacts data. What is the problem?
One thing is missing: you have not yet associated the table view controller scene in the storyboard with
the class that contains the data source code.

You can make this association in the Main.storyboard file. Open the storyboard and click on the table
view controller scene. Make sure to have the utilities area displayed. In the inspector pane, click on the
identity inspector icon, which is third from the left.

Find the section labeled Custom Class. This section provides a Class field to identify the custom class
that should be associated with the scene. Currently, that class is defaulting to UITableViewController,
which is why your table view is not displaying your contact names.

From the Library of wu yuan

ptg16315837

Creating a contacts app

379

Change the value of this field to be ContactsViewController. Your storyboard should now look like
Figure 28.6.

Figure 28.6 Table view controller scene’s custom class

While you are here, you can take care of the warning coming from the storyboard. At the top of the
project navigator, choose the issue navigator icon, which is fourth from the left (Figure 28.7). This
navigator displays your project’s current warnings and errors.

Figure 28.7 Displaying issues in the issue navigator

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

380

The issue navigator shows a warning from Main.storyboard that you need to give your prototype table
cells a reuse identifier. Because you are not using the prototype cells feature on the storyboard, you
can resolve this issue by telling the table view that it will not use prototype cells. In Main.storyboard,
make sure that the document outline is displayed. Expand the Contacts View Controller so that you can
see its hierarchy, as in Figure 28.8.

Figure 28.8 Table view outline in storyboard

Select the table view and make sure that the utilities area is displayed. In the inspector pane, select the
attributes inspector. Find the field for Prototype Cells and change the number to 0 (Figure 28.9).

Figure 28.9 Changing the prototype cells in storyboard

From the Library of wu yuan

ptg16315837

Creating a contacts app

381

Build and run the application, and you should see the warning disappear and data populate the table
view, as in Figure 28.10.

Figure 28.10 Displaying the contacts

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

382

Adding Swift to an Objective-C Project
Now that you have a small Objective-C project working, it is time to add some Swift files. Imagine, for
example, that you have an epiphany: it would be far better not to hardcode your contacts as strings in
an array. Instead, you could create a Contact type and then display the contacts’ names in the table.
You decide to use Swift for your new type because you heard how safe its initialization process is, and
you want to take advantage of it.

Add a new Swift file to your project. Click File → New → File.... In the window that pops up, select
Swift File and click Next (Figure 28.11).

Figure 28.11 Adding a new Swift file

In the next window, name the file Contact.swift. Also, make sure the box at the bottom that adds the
new file to the Contacts target is checked. Click Create.

Because you are now adding a Swift file to your Objective-C project, Xcode asks if you would like to
add a bridging header (Figure 28.12).

Figure 28.12 Would you like to configure an Objective-C bridging header?

From the Library of wu yuan

ptg16315837

Adding Swift to an Objective-C Project

383

Click Create Bridging Header. Xcode will create your new Swift file, Contact.swift, as well as the
Objective-C bridging header, Contacts-Bridging-Header.h. The bridging header is used to bridge
from Objective-C code to Swift code.

Find and select the Contacts-Bridging-Header.h file in the project navigator. You will see that it is
empty except for the following comments.

Listing 28.4 Looking at Contacts-Bridging-Header.h
//
// Use this file to import your target's public headers
// that you would like to expose to Swift.
//

As you can see, nothing is entered to this file for you. Later in this chapter, you will add an import of
the header file of a class written in Objective-C that you would like to expose to Swift. That is the role
of the bridging header.

But that comes later. Now, it is time to create your Contact class. Switch to the Contact.swift file
and add the following code.

Listing 28.5 Creating the Contact class (Contact.swift)
import Foundation

class Contact: NSObject {
 let name: String
 init(contactName: String) {
 name = contactName
 }
}

Your new class inherits from NSObject, which allows it to be exposed to the Objective-C portion of the
application. Subclassing from an Objective-C class is necessary to call Swift code from Objective-C.
In this example, you subclass from NSObject, which is the base class in Objective-C. Contact’s
simple implementation includes a name property for instances of this class and an initializer with a
contactName parameter to help prepare the instance.

If this project were written solely in Swift, you would probably want to make Contact a struct.
However, this would not work for your mixed Objective-C/Swift project, because Swift’s structs are
not visible to Objective-C.

Now that you have written the class, you are ready to use it in your Objective-C code. You are going
to change ContactsViewController to maintain an array of Contact objects rather than an array of
Strings.

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

384

First, you need to import an Xcode-generated header file into ContactsViewController.m. This will
allow you to use your new Swift Contact class in the table view controller.

Listing 28.6 Importing the Contacts-Swift.h header file
(ContactsViewController.m)

#import "ContactsViewController.h"
#import "Contacts-Swift.h"

@interface ContactsViewController ()

@property (nonatomic, strong) NSMutableArray *contacts;

@end

...

This header file, Contacts-Swift.h, exposes your Swift code to the file that imports it. It contains
interfaces for your Swift code to share with the Objective-C component of your application.

The naming convention for these header files is: ProductModuleName-Swift.h. Here, the product name
is Contacts – as is the module name, because this application has a single target. Thus, the name for
your generated header is Contacts-Swift.h.

Now that the Contact class is visible in ContactsViewController.m, change the contacts array to
hold instances of the Contact class instead of hardcoded strings. Also, be sure to use contact’s name in
the data source method, tableView:cellForRowAtIndexPath:.

From the Library of wu yuan

ptg16315837

Adding Swift to an Objective-C Project

385

Listing 28.7 Updating the contacts array (ContactsViewController.m)
#import "ContactsViewController.h"
#import "Contacts-Swift.h"

@interface ContactsViewController ()

@property (nonatomic, strong) NSMutableArray *contacts;

@end

@implementation ContactsViewController

- (id)initWithCoder:(NSCoder *)aDecoder {
 self = [super initWithCoder:aDecoder];
 if (self) {
 NSArray *contactArray = @[@"Johnny Appleseed",
 @"Paul Bunyan",
 @"Calamity Jane"];
 Contact *c1 = [[Contact alloc] initWithContactName: @"Johnny Appleseed"];
 Contact *c2 = [[Contact alloc] initWithContactName: @"Paul Bunyan"];
 Contact *c3 = [[Contact alloc] initWithContactName: @"Calamity Jane"];
 _contacts = [NSMutableArray arrayWithArray:contactArray @[c1, c2, c3]];
 }
 return self;
}

- (void)viewDidLoad {
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
 [self.tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"UITableViewCell"];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 // Dispose of any resources that can be recreated.
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return self.contacts.count;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:@"UITableViewCell"
 forIndexPath:indexPath];

 NSStringContact *contact = self.contacts[indexPath.row];

 cell.textLabel.text = contact.name;

 return cell;
}

Build and run the application. You should see the same results on the simulator.

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

386

Adding contacts
You are now using your new Swift type, but you are still hardcoding the contacts’ names. This
practice is obviously unsustainable – what if a user wants to add a contact? Your application needs a
mechanism to add new contacts.

Begin by removing your hardcoded contacts. Instead, initialize an empty contacts array to be filled
with data later.

Listing 28.8 Replacing hardcoded contact names with an array
(ContactsViewController.m)

...

- (id)initWithCoder:(NSCoder *)aDecoder {
 self = [super initWithCoder:aDecoder];
 if (self) {
 Contact *c1 = [[Contact alloc] initWithContactName: @"Johnny Appleseed"];
 Contact *c2 = [[Contact alloc] initWithContactName: @"Paul Bunyan"];
 Contact *c3 = [[Contact alloc] initWithContactName: @"Calamity Jane"];
 _contacts = [NSMutableArray arrayWithArray: @[c1, c2, c3];
 _contacts = [NSMutableArray array];
 }
 return self;
}

...

Next, create a new file that will be a new view controller to handle contact creation.

When you are asked to choose a template for the new file, select Source under the iOS section, then
Cocoa Touch Class. You are going to subclass a class available in UIKit, which is only available
for iOS projects. Name this new file NewContactViewController, and make it a subclass of
UIViewController. Also, make sure to choose Swift as the language (Figure 28.13).

From the Library of wu yuan

ptg16315837

Adding contacts

387

Figure 28.13 Subclassing UIViewController

Click Next and make sure to create the file with the project’s target selected.

You are going to fill in the details of this new class, NewContactViewController, in just a bit. For now,
switch to the Main.storyboard file and select the contacts view controller. You need to add something
to the view that a user can select to add a new contact. You will add a navigation bar to the top of the
view with a button to launch NewContactViewController.

The simplest way to do this is to add a UINavigationController as the initial view controller of
the storyboard. Search for a navigation controller in the object library. Drag one of these onto the
storyboard canvas.

Dropping a UINavigationController object onto the storyboard gives you a navigation controller
with an empty root view controller scene. You do not really need this extra scene. In fact, you have
already created a root view controller – contacts view controller. Delete the root view controller scene.

Next, make the navigation controller the initial view controller. In the document outline, expand the
Navigation Controller Scene and select the Navigation Controller. Open the attributes inspector and
check the Is Initial View Controller box.

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

388

Note that this change means that the app currently has no way to display the contacts view controller
scene. Fix this by creating a relationship segue between the navigation controller and the contacts view
controller. Select the navigation controller scene and Control-drag from the navigation controller to
the contacts view controller. In the pop-up, choose the root view controller option from the relationship
segue section (Figure 28.14).

Figure 28.14 Setting the root view controller

Your app is now living inside of a navigation controller. This means that every view controller inside
of the navigation controller will have a configurable UINavigationItem, which gives access to a title
property that can be set in the storyboard. Click on the contacts view controller scene and select the
navigation item. Find the field in the attributes inspector for the item’s title. Enter Contacts into this
field.

If you build and run the application, you will see the same empty table view, but it will now be
included in a navigation controller and will have a navigation item with Contacts as the title.

From the Library of wu yuan

ptg16315837

Adding contacts

389

Next, add a button to the navigation bar. Search for a UIBarButtonItem in the object library. Drag an
instance of this type onto the righthand side of the contacts view controller scene’s navigation item
(Figure 28.15).

Figure 28.15 Adding a bar button item to the navigation item

Select the new UIBarButtonItem and change its appearance. In the attributes inspector, change the
button’s identifier from Custom to Add. The button changes to a graphic plus symbol.

You want this bar button item to launch a new view that is dedicated to creating a new contact. Drag a
new view controller from the object library onto the storyboard. Associate the new view controller with
your new Swift class, NewContactViewController, by clicking on the view controller and changing its
class name in the identity inspector to NewContactViewController. In the document outline, the view
controller scene is renamed New Contact View Controller Scene.

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

390

Now you need to add some labels and text fields to the new contact view controller so that users can
add a new contact. Drag two instances of UILabel and two UITextFields from the object library onto
the storyboard. Set the view up as shown in Figure 28.16.

Figure 28.16 New contact view controller

Next, you need to connect a segue between the UIBarButtonItem on the table view controller’s
navigation bar and NewContactViewController. Control-drag from the plus button to the new contact
view controller scene. Release the mouse, and a menu pops up asking what sort of Action Segue you
want to create. Select Present Modally.

Build and run the application. Click the plus button, and you will find that the
NewContactViewController’s view is presented modally.

So far, so good. But you are not finished. There is no way to dismiss the view once the user has entered
the new contact’s information. And there is no way for the user to save the new contact. The next step
is to give the user a way to save the new contact and dismiss the view controller.

You could just add a button to the view controller to let the user save the entered contact
information and dismiss the NewContactViewController. But it would look clunky in
combination with the navigation bar button you already have. Instead, you are going to embed the
NewContactViewController inside a navigation controller. Then you can add a button to the new
contact view controller’s navigation item. Actually, you are going to add two buttons to the navigation
item: one to save the new contact and one to cancel the process.

Drag a new UINavigationController from the object library and drop it on the canvas in
Main.storyboard. As before, you will need to replace this navigation controller’s root view controller
with the existing New Contact View Controller. Delete the existing root view controller, Control-drag
from the navigation controller to the NewContactViewController, and select the root view controller
relationship segue.

From the Library of wu yuan

ptg16315837

Adding contacts

391

Now that NewContactViewController is embedded within a UINavigationController,
you can set its navigation item’s title as you did for ContactsViewController earlier. Select
NewContactViewController’s naviation item and change its title to “Contact.”

Though you have made the new contact view controller the root view controller of your new navigation
controller, if you run the app now the new contact view controller will not be displayed inside a
navigation controller. The contacts view controller does not know about the new navigation controller.
To fix that, you are going to replace the ContactViewController’s plus button’s segue with one whose
destination is the new navigation controller.

Control-click on ContactsViewController’s plus button and click the small x button next to present
modally, as in Figure 28.17. This deletes the segue.

Figure 28.17 Deleting a connected segue

Next, add a segue to display the UINavigationController. Control-drag from the plus button to the
UINavigationController. Choose the option to present the navigation controller modally.

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

392

Now you are ready to add two instances of UIBarButtonItem to NewContactViewController’s
navigation bar. Drag them from the object library and place one on the left side of the navigation bar
and one on the right. Select the button on the left and, in the attributes inspector, change its title to
Cancel. Change the title of the button on the right to Save. Your storyboard’s layout should look like
Figure 28.18.

Figure 28.18 New storyboard layout

Before you set these two buttons’ actions, you are going to create two outlets on
NewContactViewController for the first name and last name text fields. These outlets will allow you
to access their text, which you will use to build a new instance of the Contact type when the Save
button is pressed. Open NewContactViewController.swift and add the following properties for the
text fields.

Listing 28.9 Adding outlets for text fields (NewContactViewController.swift)
import UIKit

class NewContactViewController: UIViewController {
 @IBOutlet var firstNameTextField: UITextField!
 @IBOutlet var lastNameTextField: UITextField!
 override func viewDidLoad() {
 super.viewDidLoad()

 // Do any additional setup after loading the view.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

}

From the Library of wu yuan

ptg16315837

Adding contacts

393

Now that you have added IBOutlet properties for these text fields, you will connect them in the
storyboard. Open Main.storyboard and connect the outlets in the contact scene. Control-dragging
from the contact view controller to each text field will allow you to select the appropriate IBOutlet, as
you saw in Chapter 26.

With your properties connected to their corresponding UITextFields, you are ready to give the two
buttons actions so that they can either create a contact or cancel. You will take advantage of a feature of
UIStoryboard called an unwind segue. An unwind segue allows you to define a relationship between a
view controller and the view controller that precedes it in the navigation flow. You can think of unwind
segues as a mechanism for creating backwards navigation. This feature of storyboards is quite handy,
as you want to use these buttons to pop back to the user’s list of contacts.

To take advantage of unwind segues, you must first write an unwind method programmatically
on the view controller you want to unwind to. In this case, you want to unwind to the contacts
view controller when the user cancels the creation of a new contact, so you will add the method to
ContactsViewController.

Open ContactsViewController.m and add the new method.

Listing 28.10 Adding a method for canceling (ContactsViewController.m)
...

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 ...
}

- (IBAction)cancelToContactsViewController:(UIStoryboardSegue *)segue
{
 // No action to take if user cancels
}

@end

Your new method, cancelToContactsViewController:, takes an instance of UIStoryboardSegue.
Notice, also, that you have exposed this method to the storyboard via the IBAction return type. The
segue argument carries with it a lot of useful information, which you will use to capture the new
contact’s first and last name.

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

394

You need to connect the unwind segue to the contact view controller in Main.storyboard. Open
the storyboard and select the view controller. Notice the Exit icon at the top of the contact scene
(Figure 28.19)? You will use this element to connect your new segue to the unwinding action and
dismiss the NewContactViewController.

Figure 28.19 Exiting from a scene

Control-drag from the Cancel bar button item to the Exit icon. Release, and you will see an option to
connect the button’s action to cancelToContactsViewController:. Select this method.

Run your application, tap the button to add a new contact, then tap Cancel. You will unwind back to
the table’s list of the user’s contacts.

Your next step is to wire up the Save bar button to save the new contact’s information and also unwind
back to the list of contacts. Also, the list of contacts should be updated to display the new contact. You
will follow the same strategy as with the Cancel button, but this time you will create an unwind action
that makes use of the information sent along with the UIStoryboardSegue instance.

Open ContactsViewController.m and add a new unwind action. You will use this method when the
user clicks the Save button in the contacts scene.

From the Library of wu yuan

ptg16315837

Adding contacts

395

Listing 28.11 Adding createNewContact: (ContactsViewController.m)

...

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:@"UITableViewCell"
 forIndexPath:indexPath];

 Contact *contact = self.contacts[indexPath.row];

 cell.textLabel.text = contact.name;

 return cell;
}

- (IBAction)cancelToContactsViewController:(UIStoryboardSegue *)segue
{
 // No action to take if user cancels
}

- (IBAction)createNewContact:(UIStoryboardSegue *)segue
{
 NewContactViewController *newContactVC = segue.sourceViewController;
 NSString *firstName = newContactVC.firstNameTextField.text;
 NSString *lastName = newContactVC.lastNameTextField.text;
 if (firstName.length != 0 || lastName.length != 0) {
 NSString *contactName = [NSString stringWithFormat:@"%@ %@",
 firstName, lastName];
 Contact *newContact = [[Contact alloc] initWithContactName:contactName];
 [self.contacts addObject:newContact];
 [self.tableView reloadData];
 }
}

@end

Here, you define a new unwind action. This action uses the segue parameter passed into the method’s
argument to get the sourceViewController that originated the unwind action. After you get the
sourceViewController from the segue, you can then grab the text from the UITextField property
outlets on NewContactViewController.

Next, you check to make sure at least one of the strings is not empty. If they contain any text, you
create a new instance of the Contact type and add it to the contacts property. Last, you reload the
tableView to display the new contact’s name.

You can now use this method as the unwind action when the user taps the Save button to create a new
contact. Switch back to Main.storyboard and select the new contact view controller. Control-drag
from the Save button to the Exit icon, and choose createNewContact:.

Run the application. Add a new contact and tap Save. You should be transferred back to your list of
contacts, and you should see the newly added contact.

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

396

Adding an Objective-C Class
Now that you have interoperated from Objective-C to Swift, your next task is to interoperate from
Swift to Objective-C. You will create a new Objective-C class to make a default image for new
contacts. Your Swift class NewContactViewController will use this new Objective-C class. This
simulates a fairly common reality: an existing Mac or iOS project will often have a number of
Objective-C classes that are needed in the Swift components of the project.

Create a new Objective-C file that is a Cocoa Touch Class and call it DefaultImage. Its job will be to
create a new contact’s default image. Make this new class a subclass of NSObject. Be sure to select
Objective-C as the language for this class.

Before you begin to add new code to this class, you need to add a UIImageView to the contact scene in
Main.storyboard. This image view will display the default image for the new contact. Drag an Image
View from the object library onto the contact scene. Make the image view 240 points wide and 240
points tall, and place it in the center of the view.

Add Auto Layout constraints to ensure that the view for NewContactViewController displays its
subviews correctly.

Center the image view in the view with vertical and horizontal constraints. Select the UIImageView,
and open the Auto Layout Align menu in the bottom righthand corner of the storyboard. Check the
options for Horizontal Center in Container and Vertical Center in Container in the menu that appears, as
in Figure 28.20. Select the button that says Add 2 constraints.

Figure 28.20 Centering the image view

Next, set a width and height constraint for the image view. With the image view still selected, open the
Auto Layout Pin menu in the bottom righthand corner of the storyboard. Check the boxes for Width and

From the Library of wu yuan

ptg16315837

Adding an Objective-C Class

397

Height, leaving the values as they appear (Figure 28.21). Add the two constraints to pin the image view
to this width and height.

Figure 28.21 Width and height constraints for the image view

When you are done, your Contact scene should look like Figure 28.22.

Figure 28.22 New contact view Auto Layout

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

398

These simple constraints will work fine in portrait mode on the simulator for iPhone 6 or 6 Plus. If you
change to a different device or orientation, then the layout will be disturbed.

Now that you have an image view on the contact scene, you need to add a new IBOutlet for the image
view to NewContactViewController. Add an UIImageView property to NewContactViewController so
that you can set the image that will be displayed. Last, make sure to connect this property to the image
view in Main.storyboard.

Listing 28.12 Adding an IBOutlet to the image view
(NewContactViewController.swift)

class NewContactViewController: UIViewController {

 @IBOutlet var firstNametext field: UITextField!
 @IBOutlet var lastNametext field: UITextField!
 @IBOutlet var contactImageView: UIImageView!

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
}

Time to implement your DefaultImage class. Switch to DefaultImage.h, and add a
generateDefaultImageOfSize method as shown below. Make sure that you import UIKit at the top of
the file.

Listing 28.13 Implementing DefaultImage (DefaultImage.h)

#import <UIKit/UIKit.h>

@interface DefaultImage : NSObject

+ (UIImage *)generateDefaultImageOfSize:(CGSize)size;

@end

This new method will be the public interface for the DefaultImage class. It will use the size argument
to do some drawing in an offscreen context. Open DefaultImage.m and enter the drawing code. It is a
sizeable block of code – take your time.

From the Library of wu yuan

ptg16315837

Adding an Objective-C Class

399

Listing 28.14 Drawing the default image (DefaultImage.m)

#import "DefaultImage.h"

@implementation DefaultImage

+ (UIImage *)generateDefaultImageOfSize:(CGSize)size
{
 // Make frame
 CGRect frame = CGRectMake(0, 0, size.width, size.height);

 // Get image context
 UIGraphicsBeginImageContext(size);

 // Get context reference
 CGContextRef context = UIGraphicsGetCurrentContext();

 // Draw white background to avoid default black
 CGColorRef white = [[UIColor whiteColor] CGColor];
 CGContextSetFillColorWithColor(context, white);
 CGContextFillRect(context, frame);

 // Make yellow circle
 CGColorRef yellow = [[UIColor yellowColor] CGColor];
 CGContextSetFillColorWithColor(context, yellow);
 CGContextFillEllipseInRect(context, frame);

 // Center of circle
 CGFloat x = frame.origin.x + size.width / 2;
 CGFloat y = frame.origin.y + size.height / 2;
 CGPoint center = CGPointMake(x, y);

 // Draw eyes
 CGColorRef black = [[UIColor blackColor] CGColor];
 CGRect leftEyeRect = CGRectMake(center.x - 50, center.y - 50, 20, 20);
 CGRect rightEyeRect = CGRectMake(center.x + 30, center.y - 50, 20, 20);
 CGContextSetFillColorWithColor(context, black);
 CGContextFillEllipseInRect(context, leftEyeRect);
 CGContextFillEllipseInRect(context, rightEyeRect);

 // Draw smile
 CGContextSetLineWidth(context, 5.0);
 CGContextBeginPath(context);
 CGContextMoveToPoint(context, center.x - 50, center.y + 35);
 CGContextAddCurveToPoint(context,
 center.x - 25, center.y + 50,
 center.x + 25, center.y + 50,
 center.x + 50, center.y + 35);
 CGContextStrokePath(context);

 UIImage *image = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 return image;
}
@end

The drawing code may look pretty gnarly, but do not worry too much about it. The framework you
are using here is called Core Graphics, and its details are outside the scope of this book. Apple’s

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

400

documentation on Core Graphics is very thorough if you are curious about what all those functions are
doing. The end result is a yellow smiley face, which you are going to use as a contact’s default image.

generateDefaultImageOfSize’s main job is to create an instance of UIImage. To do
so, you begin a new graphics context of the appropriate size. You next grab a reference
to that context so that you can use various Core Graphics drawing functions. You use
UIGraphicsGetImageFromCurrentImageContext() to create an image from the current context.
Because you created a new context, you had to end it to clean up your drawing environment. Last, you
returned the image you created.

When you are interoperating with Objective-C in Swift, it is a good idea to consider how
these two languages will communicate with each other in your project. For example, the
generateDefaultImageOfSize: method provides a simple interface for the Swift code to generate the
default image.

Before you can use your Objective-C class in the Swift portions of your project, you need to import the
class in the project’s bridging header file. Open Contacts-Bridging-Header.h and import the header
file for DefaultImage there. Doing so will ensure that this Objective-C class is available to your Swift
code.

Listing 28.15 Importing the Objective-C class’s header in the bridging header file
(Contacts-Bridging-Header.h)
//
// Use this file to import your target's public headers
// that you would like to expose to Swift.
//
#import "DefaultImage.h"

With the DefaultImage class visible to Swift, it is time to use it. Create an instance of DefaultImage in
NewContactViewController’s viewDidLoad method.

Listing 28.16 Using the Objective-C DefaultImage class in
NewContactViewController (NewContactViewController.swift)
class NewContactViewController: UIViewController {

 @IBOutlet var firstNametext field: UITextField!
 @IBOutlet var lastNametext field: UITextField!
 @IBOutlet var contactImageView: UIImageView!

 override func viewDidLoad() {
 super.viewDidLoad()
 contactImageView.image =
 DefaultImage.generateDefaultImageOfSize(contactImageView.frame.size)
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
}

Adding DefaultImage.h to the Contacts-Bridging-Header.h means that this file will be
automatically visible to any Swift file within the same target. You can use the DefaultImage class as if
it were written in Swift, as you can see in the above implementation of viewDidLoad.

From the Library of wu yuan

ptg16315837

Adding an Objective-C Class

401

Besides importing DefaultImage.h into the bridging header, you do not have to do any additional
work to use your DefaultImage Objective-C class from your Swift code. You simply call
DefaultImage’s class method just as if it were on a Swift class. Doing so triggers the drawing code in
DefaultImage and returns an image. The resulting image is given to the contactImageView’s image
property.

Run the application to see the product of your work. Click the plus button at the upper-right corner of
the app to create a new contact. NewContactViewController will be displayed with the default image
below the text fields (Figure 28.23).

Figure 28.23 A default image for a new contact

From the Library of wu yuan

ptg16315837

Chapter 28 Interoperability

402

In this chapter, you developed an app that simulates a common real-world programming situation.
Many apps that were developed prior to the release of Swift will likely require a mixed-language
approach for the near future: older parts will remain in Objective-C, and newer parts will be developed
in Swift. The code you wrote for Contacts in Objective-C is like the “older,” pre-existing parts of the
application. You added “newer” parts in Swift to see the process of organizing an application that needs
to take advantage of interoperability.

You will most frequently be interoperating with the Cocoa and Foundation frameworks when you
write a Mac or iOS application. This form of interoperation is seamless and is handled for you
automatically. Things become more complicated, as you have seen, when you want to interoperate
between Objective-C and Swift code that you have written.

Silver Challenge
Add functionality to the app to allow a user to view a contact’s information. A user
should be able to tap on a row in ContactsViewController, and that should push a new
UIViewController onto the current UINavigationController’s stack. Call this new view controller
ExistingContactViewController and implement it in Swift.

Gold Challenge
Users should be able to edit an existing contact’s information. Add this functionality to
ExistingContactViewController. Make sure that the changes made in this view controller are
reflected in the ContactsViewController.

From the Library of wu yuan

ptg16315837

403

29
Conclusion

Congratulations, you have made it to the end of this introduction to the Swift programming language.
Thank you for sticking with us.

Along the way, you covered quite a bit of material, from the basic features of Swift like let and var
to more advanced features like generics and interoperability. You also saw how to put these pieces
together to write pure Swift programs and applied your understanding of Swift to write some simple
Mac OS X and iOS applications. You are now a Swift developer.

Where to Go from Here?
After all your hard work, what should you expect for your Swift development? The truth is that your
journey is just beginning. Swift is a rich language, and there is ample opportunity to learn more
every day. Furthermore, Swift truly begins to show its power in its interaction with the various Apple
frameworks used to develop Mac and iOS applications. That is where you should focus your work.

Shameless Plugs
Matt and John are both on Twitter. You can follow Matt with @matthewDmathias, and you can follow
John with @nerdyjkg. We occasionally tweet useful information on Swift programming in between our
usual photos of cats.

If you enjoyed this book, please take a look at other Big Nerd Ranch texts at http://
www.bignerdranch.com/books. We have references on Mac OS X and iOS programming and offer
weeklong training bootcamps for both that will help you learn these platforms more deeply. Visit
http://www.bignerdranch.com/we-teach for more details.

An Invitation
Your knowledge of Swift will continue to grow with practice. Take the time to begin a project;
make something new. If you do not have a project available or in mind, visit https://
developer.apple.com. This website provides a good overview of the resources available to Mac and
iOS developers and also provides some examples that may inspire your creativity.

Another recommendation is to find the Meetup groups for Mac and iOS development in your area.
Most major cities have such groups, and they host regular talks. Going to these meetings will help you
learn, practice, and get to know your peers.

So, come join us. We’re out here making things, and we would love to see what you can create.

From the Library of wu yuan

http://www.bignerdranch.com/books
http://www.bignerdranch.com/books
http://www.bignerdranch.com/we-teach
https://developer.apple.com
https://developer.apple.com

ptg16315837

This page intentionally left blank

From the Library of wu yuan

ptg16315837

405

Index
Symbols
! (force-unwrap operator), 66
! (implicitly unwrapped optionals), 69, 201
! (not operator), 21
!= operator, 303
$0 (argument reference), 116
% operator, 109
%= operator, 30
&& operator, 23
&+ operator, 31
*= operator, 30
+ operator, 7
++ operator, 30
+= operator, 7, 30, 81
-- operator, 30
-= operator, 30
. syntax, 154
... syntax, 104
// (code comment), 6
/= operator, 30
: for protocol conformance, 229
< operator, 20, 304
<> syntax, 87, 266
= operator, 7, 11
== operator, 33, 83, 218, 302, 303
=== operator, 218
>= operator, 23
? (failable initializers), 201
? (optional), 65
@IBAction, 331
@IBOutlet, 331
[:] (Dictionary literal syntax), 88
[] (Array literal syntax), 76
\() (string interpolation), 15
\u{} syntax, 60
_ (as parameter name), 206
_ (wildcard), 44
|| operator, 21

A
a ? b : c statements, 22
access control, 180-183
action segues, 390
addition assignment operator (+=), 7, 30, 81

addition operator (+), 7
advancedBy(_:) function, 62
and operator (&&), 21
append(_:) function, 77
appendContentsOf(_:) method, 71
Application Programming Interfaces (APIs), 6
application sandbox, 367
applications, document-based, 313
ARC (Automatic Reference Counting), 289
arguments

(see also parameters)
functions as, 118-120
shorthand names for, 116

Array index out of range error, 340
Array literals, 76
Array() syntax, 93
arrays

about, 75
appending items, 77
changing items, 79
checking equality of, 83, 84
combining, 81, 82
converting dictionaries to, 93
copying, 216, 217
counting items, 78
creating sets from, 96
declaring, 75, 76
filtering, 125
immutable, 84, 85
initializing, 76
inserting items, 82
looping over, 80, 81
mapping contents, 124
NSArray, 368
reducing, 126
removing items, 78, 80
sets vs., 95
sorting, 113-117
subscripting, 79, 80

as! operator, 337
assert(_:_:) function, 241
assertions, 241
assignment operator (=), 7, 11
associated types, 271-274
associated values, 138-140
associativity, 29
attributes, 319
attributes inspector, 348, 374

From the Library of wu yuan

ptg16315837

Index

406

Auto Layout, 326-328, 349-358
Automatic Reference Counting (ARC), 289

B
binary numbers, 25
Boolean variables, 21
break statements, 45, 56
bridging, 313
bridging headers, 382, 400
buttons

adding to navigation bar, 389
adding to view, 322, 348

C
catch statements, 246
Character type, 58
characters property, 58, 239
class keyword, 155, 162, 178
Class...has no initializers error, 194
classes

about, 155
computed properties, 178
convenience initializers, 191, 197, 198
creating, 155, 156
default initializers, 191
designated initializers, 191, 194-196
failable initializers, 204
inheritance (see inheritance)
memory management, 200, 201
memory usage, 289
required subclass initializers, 199, 200
root, 361
stored properties, 178
structs vs., 160, 209, 219
using in Objective-C, 383, 384

closure expressions, 115
closures

about, 113
with lazy properties, 172
map(_:) method, 267
reference cycles in, 295-298
as reference types, 122, 123
self in, 172
shorthand argument names, 116
tracking values with, 121, 122
trailing syntax, 116
type inference in, 115, 116

Cocoa
Auto Layout, 326-328
creating a new project, 315, 316
error handling, 339
interaction with Swift, 371
loading documents, 339-341
NSTextView, 318
saving documents, 334-339
speech synthesizer, 331
view controllers, 338
window controllers, 336, 338

Cocoa Touch Class, 360
collection types, 12
collections

about, 75
arrays (see arrays)
dictionaries (see dictionaries)
sets (see sets)

command-line tools, 4, 145
comments, 6
comparability, 301
Comparable protocol, 304-307
comparators (see comparison operators)
comparison operators

about, 305
overloading, 302-305
table of, 20

condition expressions, 51
conditional statements

else if, 24
guard, 111, 249
if-case, 45
if/else, 19-21
nested if’s, 23
ternary operator, 22
while let, 242

console, 8
constants

declaring, 13
as reference types, 213, 214
as value types, 213, 214
variables vs., 13

contains(_:) method, 97
continue statements, 54, 55
control transfer statements

break, 45, 56
continue, 54, 55
fallthrough, 38

From the Library of wu yuan

ptg16315837

Index

407

in loops, 54
controllers, 317
convenience keyword, 197
copies, shallow. vs deep, 216, 217
count property, 62, 78, 88
curried functions, 167
CustomStringConvertible protocol, 262, 283

D
data types, 11
debug area, 8, 148
decrementing, 30
default case, 35, 40, 41
deinit method, 290
deinitializers, 200, 201, 289
dictionaries

about, 87
adding items, 90
converting to arrays, 93
counting items, 88
declaring, 87, 88
immutable, 93
looping over, 92
modifying values, 89, 90
populating, 88
reading from, 89
removing items, 91
sets vs., 95

Dictionary type, 87
didSet, 176
division, 29
do/catch statements, 246
document outline, 320
document-based applications, 313
dot syntax, 58
Double type, 33

E
editor area, 148
else if statements, 24
empty variables, 14
encapsulation, 223
enumerations

about, 129
associated values, 138-140
comparing values, 130-132
creating, 129, 130

as ErrorTypes, 243
methods on, 135
nested, 170, 171
raw values, 132-134
recursive, 141-143

equality, 83, 84, 218, 270, 301
Equatable protocol, 270, 301-304
error domains, 339
error handling

assertions, 241
catching, 246, 247
in Cocoa, 339
ignoring, 252, 253
Swift philosophy of, 254, 255
throwing, 243, 244, 254
traps, 237

Errors thrown from here are not handled.
error, 252
errors, recoverable vs nonrecoverable, 237
ErrorType protocol, 243
Execution interrupted error, 30
exhaustiveness checks, 255
extension keyword, 258, 281
extensions

about, 257
adding functions, 263
adding initializers, 260, 261
adding nested types, 261, 262
on existing types, 257, 258
for grouping, 259
for protocol conformance, 259
on protocols, 279

F
fallthrough statement, 38
filter(_:) method, 125
first-class functions, 123
first-class objects, 117
Float type, 33
floating-point numbers, 33, 34
for case statements, 50, 51
for keyword, 47, 51, 52
for-in loops, 47-49, 92
frameworks

(see also modules)
free functions, 153
func keyword, 101

From the Library of wu yuan

ptg16315837

Index

408

function currying, 163-168
function types, 111, 112, 117, 118
functional programming, 123
functions, 8

about, 101
adding via an extension, 263
as arguments, 118-120
calling, 101
curried, 163-165
defining, 101
generic, 267-269
higher-order, 123-126
modifying argument values, 106, 107
mutating, 167
nesting, 108
overloading, 303
parameters (see parameters)
polymorphism, 277
as return type, 117, 118, 163
returning from, 111
returning multiple values, 108-110
returning optionals, 110
returning values, 107
scope, 108

G
GeneratorType protocol, 271-274
generics

about, 265
associated types, 271-274
declaring, 266
functions and methods, 267-269
optionals, 276
type constraints, 270

get keyword, 175
getters, 175, 182, 183
global functions, 153
guard statements, 111

H
hashability, 87
hexadecimal codes, in strings, 60
higher-order functions, 123-126

I
IB (Interface Builder) (see Xcode)
@IBAction, 331

@IBOutlet, 331
identity, 218
if-case statement, 45
if/else statements, 19-21, 23, 45, 46
immutability, 123, 215
import Foundation, 149
import keyword, 180
in-out parameters, 106, 107, 167
incrementing, 30
infinite loops, 55
inheritance

about, 155-157
class initializers and, 192, 193
protocol, 233, 234

init keyword, 185
initialization, 14, 51, 185, 205
initializer delegation, 189-191, 198
initializers

adding via an extension, 260, 261
automatic inheritance, 193
class inheritance and, 192, 193
convenience, 191, 194, 197, 198
creating, 185, 369
creating a set from an array, 96
custom, 187-189
default for classes, 191
default for structs, 186, 187
deinitialization, 200, 201, 289
designated, 191, 194-196, 198, 200
empty, 186
failable, 201-204
memberwise, 186-188, 190
parameters, 206
required, 199, 200

inout keyword, 106
insert(_:) method, 96
insert(_:atIndex:) function, 82
instance methods, 153, 154, 166
Int type, 12

converting, 32
declaring, 27, 28
OS/X vs iOS, 26
recommendation for, 32
sized, 26

Int16 type, 26
Int32 type, 26
Int64 type, 26
Int8 type, 26

From the Library of wu yuan

ptg16315837

Index

409

integer overflow error, 28
integers

about, 25
converting types, 32
maximum and minimum values, 25-27
operations on, 28-31
overflow/underflow, 30, 31
signed/unsigned, 26

Interface Builder (IB) (see Xcode)
internal access, 181
internal private(set) syntax, 182
intersect(_:) method, 98
interval matching, 44
iOS

adding model to view controller, 365-367
Auto Layout, 349-358
creating a model, 360-365
creating a new project, 346, 347
image views, 396-400
loading files, 369, 370
navigation controller, 387-389
saving files, 367-369
table view, 354-357

isDisjointWith(_:) method, 99, 100
iterators, 47, 49

K
keys, 87, 89
KeyType, 87

L
last property, 216
lazy keyword, 171
lazy loading, 171
let keyword, 13, 85, 93, 123, 170
line breaks (in code), 152
logical operators, 21
loops

about, 47
over arrays, 80, 81
control transfer statements in, 54-56
over dictionaries, 92
for, 51, 52
for case statements in, 50, 51
for-in, 47-49, 92
infinite, 55
repeat-while, 53

over sets, 96
while, 52, 53
while let, 242

M
main.swift, 148, 149
map(_:) method, 124, 231
memory allocation, 289, 290
memory leaks, 293
memory management

about, 289, 290
deinitializers, 200, 201
reference count, 289
reference cycles, 293-298
references, 290-293

methods
about, 113
on enumerations, 135
generic, 267-269
mutating, 137, 154, 235, 236
overloading, 303
parameter names, 160
type methods, 162

Missing argument error, 192, 196
Model-View-Controller (MVC) design, 317
models, 228, 317, 360-367
modules

(see also frameworks)
mutating keyword, 154, 163
mutating methods, 137
MVC (Model-View-Controller) design, 317

N
navigator area, 148
nested types, 170, 171, 261, 262
next method on generators, 271
nil coalescing operator, 71, 72
nil value, 65, 66, 158, 203
not operator (!), 21
NSArray type, 368
NSData class, 337
NSDocument class, 338
NSError class, 339
NSFileManager class, 368
NSObject class, 361, 383
NSSpeechSynthesizer class, 331-333
NSText property, 319

From the Library of wu yuan

ptg16315837

Index

410

NStextView class, 318
NSViewController class, 318, 338
numbers

floating-point, 33, 34

O
object library, 321
Objective-C

adding Swift file, 382, 383
sample project, 371-381
using in Swift, 396-402
using Swift in, 383, 384

optionals
about, 65, 276
accessing value of, 66, 71
binding, 67-69, 111, 120, 158
chaining, 70, 158, 159, 203
declaring, 65
force-unwrapping, 66
implicitly unwrapped, 69
modifying in place, 71
nil coalescing operator, 71, 72
returning, 110, 119, 201
unwrapping multiple, 68

or operator (||), 21
Organization Identifier, 146
Organization Name, 146
outlets, 330, 331, 358-360, 392
overflow operators, 31
overloading, 303
override error, 179
override keyword, 179
overriding, 157-159, 179

P
parameters

about, 102
default values, 105, 106
in-out, 106, 107, 167
for initializers, 206
in methods, 160
names, 103, 104
passing multiple, 102, 103
variadic, 104

pattern matching, 44, 45, 139
placeholder types, 266, 270
playgrounds

Assistant Editor view, 25
code editor, 6
creating, 4
debug area, 8
Quick Look, 78
results sidebar, 6, 48

polymorphism, 277
precedence, 29
print(), 8
private access, 181
Product Name, 146
project navigator, 148
properties

about, 169
adding to a struct, 152
computed, 169, 174, 178
lazy stored, 171-173
lazy, calculation of, 173
optional, 155
read-only, 169
read/write, 169
static, 179, 180
stored, 169, 170, 178, 258
type properties, 177-180

property observers, 176, 177, 259
protocol composition, 234, 235
protocol conformance, 232, 233, 258, 259, 284
protocol extensions

about, 279
creating, 281, 282
default implementations, 283-285
in the Swift standard library, 288
naming conflicts, 286, 287
where clauses, 282, 283

protocol inheritance, 233, 234
protocol keyword, 235
protocols

about, 223, 229
associated types, 271-274
Comparable, 304-307
CustomStringConvertible, 232
defining, 229-232
Equatable, 270, 301-304
ErrorType, 243
extending (see protocol extensions)
as types, 230

public access, 181
pure functions, 123

From the Library of wu yuan

ptg16315837

Index

411

Pyramid of Doom, 68

Q
quotation marks, 6

R
ranges, 39, 63
raw value enumerations, 132-134
recursive enumerations, 141-143
reduce(_:combine:), 126
refactoring, 23
reference count, 289
reference cycles, 293-298
reference semantics, 209-211
reference types

about, 122, 123
constants as, 213, 214
in value types, 214, 215

references, 209, 211, 290-295
relationship segues, 388
removeAtIndex(_:) function, 78
removeValueForKey(_:) function, 91
repeat-while loops, 53
'required' initializer error, 199
required keyword, 199
return keyword, omitting in closures, 116
return values

about, 107
functions as, 117, 118
multiple, 108-110
optional, 110, 119

root classes, 361
run program, 149

S
scenes, 321, 378
scope, 108
segues, 388, 390, 391, 393, 394
self, 135-138, 172, 236
SequenceType protocol, 272, 282
set keyword, 175
Set type, 95
sets

about, 95
adding items, 96
checking for an item, 97
combining, 97, 98

declaring, 95-97
disjoint, 99, 100
intersections, 98
looping over, 96

setters, 175, 176, 182, 183
sleep() function, 54
sort(_:) method, 113-117
source files, 180
specialization

of generics, 267
speech, synthesizing, 331-333
startIndex property, 62
static keyword, 177, 178
static property, 179, 180
storyboards, 320, 374

root view controllers, 388
string interpolation, 15, 40, 92, 110
String type, 11, 57
String variables, 6, 7
String.Index type, 62
strings

accessing characters in, 62, 63
canonical equivalence, 61, 62
counting characters, 62
creating, 57, 58
inserting variable value in, 15
mutable, 57
Unicode scalars, 59-61

strong typing, 123
struct keyword, 152
structs

about, 150
adding properties, 152
changing properties of, 154
classes vs., 160, 209, 219
creating, 152
custom initializers, 187-189
default initializers, 186, 187
instance methods, 153, 154

subclasses
about, 156
creating, 156, 157, 386
overriding, 157-159, 178
requiring initializers on, 199, 200

subscript syntax ([]), 62
subscripting, 79, 80, 89
super keyword, 157
superclasses, 156, 195

From the Library of wu yuan

ptg16315837

Index

412

switch cases
about, 35, 36
associated values and, 139
basic example, 36-38
if-case, 45
if/else vs., 45, 46
pattern matching in, 44, 45
ranges, 39
tuples, 42-44
where clauses, 41, 42

switch statements, 130-132

T
target-action pairs, 329, 358-360
text fields, 349
text view

capturing entered text, 330, 331
empty, 332
loading data into, 339-341
managing with ViewController, 342, 343

throws keyword, 242-244, 249
trailing closure syntax, 116
traps, 31, 237
trees, 141-143
try keyword, 246, 250, 252-254
tuples, 42-44, 108-110
type annotation, 12
Type annotation missing in pattern error,
187
type casting, 337
type checking, 11
type constraints, 270, 272, 274, 275
type extensions (see extensions)
type inference, 11, 51, 76, 115, 116, 130, 272,
273
type methods, 162
type properties, 177-180
type...does not conform to protocol...
error, 236
typealias keyword, 257, 258, 271

U
UIImageView type, 396-400
UIKit, 386
UINavigationController type, 387
UInt type, 27
UITableView type, 354-357, 363

underflowing, 31
Unicode, 59
Unicode scalars

about, 59-61
canonical equivalence, 61, 62
combining, 60
extended grapheme clusters, 60

unicodeScalars property, 60
union(_:) method, 97, 98
unwind segues, 393, 394
unwrapping

forced, 66, 204
implied, 69
multiple optionals, 68

updateValue(_:forKey:) function, 89, 90
upper case, converting to, 70
Use of 'self' in delegating initializer
before self.init is called error, 197
utilities area, 148, 321

V
value binding, 40, 41
Value of optional type...not unwrapped...
error, 203
value semantics, 207-209
value types

about, 209
constants as, 213, 214
memory management, 200
in reference types, 214, 215
self and, 137

var keyword, 6
variable types, 7, 11, 21
variables, 6

assigning function types to, 112
assigning values, 7
constants vs., 13
declaring, 6, 12
initializing, 14
inserting into a string, 15

variadic parameters, 104
view controllers, 321, 338, 375-377, 393
views

about, 317
adding buttons, 322, 348
adding text field, 349
creating, 320, 321, 348, 349

From the Library of wu yuan

ptg16315837

Index

413

dismissing, 394
image, 396-400
layout, 349-358
table, 354-357, 362-367, 378
text, 323-325

W
where clauses

on generic bounds, 274, 275
in protocol extensions, 282, 283
on if cases, 46
on switch cases, 41, 42

where clauses on optional binding, 69
while let loops, 242
while loops, 52, 53
willSet, 176, 259
writeToURL method, 368

X
Xcode

adding a file, 150
adding a text view, 323-325
application window, 148
connecting outlets, 330, 331
creating a model, 360-365
creating a new project, 145, 315, 316, 346, 347
creating views, 320, 321, 348, 349
Custom Class, 378
document outline, 320
importing header files, 384, 400
Interface Builder (IB), 319
issue navigator, 189
object library, 321
playgrounds (see playgrounds)
target-action pairs, 329, 358-360
toolbar, 149
utilities area, 321
view element declaration, 288
view layout, 326-328, 349-358

Xcode documentation, 85

From the Library of wu yuan

	Cover
	Table of Contents
	Introduction
	Learning Swift
	Whither Objective-C?
	Prerequisites
	How This Book Is Organized
	How to Use This Book
	Challenges
	For the More Curious
	Typographical Conventions
	Necessary Hardware and Software
	Before We Begin

	Part I. Getting Started
	Chapter 1 Getting Started
	Getting Started with Xcode
	Playing in a Playground
	Varying Variables and Printing to the Console
	You Are On Your Way!
	Bronze Challenge

	Chapter 2 Types, Constants, and Variables
	Types
	Constants vs. Variables
	String Interpolation
	Bronze Challenge

	Part II. The Basics
	Chapter 3 Conditionals
	if/else
	Ternary Operator
	Nested ifs
	else if
	Bronze Challenge

	Chapter 4 Numbers
	Integers
	Creating Integer Instances
	Operations on Integers
	Integer division
	Operator shorthand
	Overflow operators

	Converting Between Integer Types
	Floating-Point Numbers
	Bronze Challenge

	Chapter 5 Switch
	What Is a Switch?
	Switch It Up
	Ranges
	Value binding
	where clauses
	Tuples and pattern matching
	Pattern matching

	switch vs. if/else
	Bronze Challenge

	Chapter 6 Loops
	for-in Loops
	for case

	A Quick Note on Type Inference
	for Loops
	while Loops
	repeat-while Loops
	Control Transfer Statements, Redux
	Bronze Challenge

	Chapter 7 Strings
	Working with Strings
	Unicode
	Unicode scalars
	Canonical equivalence
	Counting elements
	Indices and ranges

	Silver Challenge

	Chapter 8 Optionals
	Optional Types
	Optional Binding
	Implicitly Unwrapped Optionals
	Optional Chaining
	Modifying an Optional in Place
	The Nil Coalescing Operator
	Silver Challenge

	Part III. Collections and Functions
	Chapter 9 Arrays
	Creating an Array
	Accessing and Modifying Arrays
	Array Equality
	Immutable Arrays
	Documentation
	Bronze Challenge
	Silver Challenge

	Chapter 10 Dictionaries
	Creating a Dictionary
	Populating a Dictionary
	Accessing and Modifying a Dictionary
	Adding and Removing Values
	Looping
	Immutable Dictionaries
	Translating a Dictionary to an Array
	Silver Challenge

	Chapter 11 Sets
	What Is a Set?
	Getting a Set
	Working with Sets
	Unions
	Intersects
	Disjoint

	Bronze Challenge
	Silver Challenge

	Chapter 12 Functions
	A Basic Function
	Function Parameters
	Parameter names
	Variadic parameters
	Default parameter values
	In-out parameters

	Returning from a Function
	Nested Functions and Scope
	Multiple Returns
	Optional Return Types
	Exiting Early from a Function
	Function Types
	Bronze Challenge
	Silver Challenge

	Chapter 13 Closures
	Closure Syntax
	Closure Expression Syntax
	Functions as Return Types
	Functions as Arguments
	Closures Capture Values
	Closures Are Reference Types
	Functional Programming
	Higher-order functions
	map(_:)
	filter(_:)
	reduce(_:combine:)

	Gold Challenge

	Part IV. Enumerations, Structures, and Classes
	Chapter 14 Enumerations
	Basic Enumerations
	Raw Value Enumerations
	Methods
	Associated Values
	Recursive Enumerations
	Bronze Challenge
	Silver Challenge

	Chapter 15 Structs and Classes
	A New Project
	Structures
	Instance Methods
	Mutating methods

	Classes
	A monster class
	Inheritance
	A zombie subclass
	Preventing overriding
	Your town has a zombie problem

	Method Parameter Names
	What Should I Use?
	Bronze Challenge
	Silver Challenge
	For the More Curious: Type Methods
	For the More Curious: Function Currying

	Chapter 16 Properties
	Basic Stored Properties
	Nested Types
	Lazy Stored Properties
	Computed Properties
	A getter and a setter

	Property Observers
	Type Properties
	Access Control
	Controlling getter and setter visibility

	Bronze Challenge
	Silver Challenge
	Gold Challenge

	Chapter 17 Initialization
	Initializer Syntax
	Struct Initialization
	Default initializers for structs
	Custom initializers for structs
	Initializer delegation

	Class Initialization
	Default initializers for classes
	Initialization and class inheritance
	Automatic initializer inheritance
	Designated initializers for classes
	Convenience initializers for classes

	Required initializers for classes
	Deinitialization

	Failable Initializers
	A failable Town initializer
	Failable initializers in classes

	Initialization Going Forward
	Silver Challenge
	Gold Challenge
	For the More Curious: Initializer Parameters

	Chapter 18 Value vs. Reference Types
	Value Semantics
	Reference Semantics
	Constant Value and Reference Types
	Using Value and Reference Types Together
	Immutable reference types

	Copying
	Identity vs. Equality
	What Should I Use?

	Part V. Advanced Swift
	Chapter 19 Protocols
	Formatting a Table of Data
	Protocols
	Protocol Conformance
	Protocol Inheritance
	Protocol Composition
	Mutating Methods
	Silver Challenge
	Gold Challenge

	Chapter 20 Error Handling
	Classes of Errors
	Lexing an Input String
	Catching Errors
	Parsing the Token Array
	Handling Errors by Sticking Your Head in the Sand
	Swift Error Handling Philosophy
	Bronze Challenge
	Silver Challenge
	Gold Challenge

	Chapter 21 Extensions
	Extending an Existing Type
	Extending Your Own Type
	Use extensions to add protocol conformance
	Adding an initializer with an extension
	Nested types and extensions
	Extensions with functions

	Bronze Challenge
	Bronze Challenge
	Silver Challenge

	Chapter 22 Generics
	Generic Data Structures
	Generic Functions and Methods
	Type Constraints
	Associated Type Protocols
	Type Constraint where Clauses
	Bronze Challenge
	Silver Challenge
	Gold Challenge
	For the More Curious: Understanding Optionals
	For the More Curious: Parametric Polymorphism

	Chapter 23 Protocol Extensions
	Modeling Exercise
	Extending ExerciseType
	Protocol Extension where Clauses
	Default Implementations with Protocol Extensions
	Naming Things: A Cautionary Tale
	Bronze Challenge
	Gold Challenge

	Chapter 24 Memory Management and ARC
	Memory Allocation
	Strong Reference Cycles
	Reference Cycles in Closures
	Bronze Challenge
	Silver Challenge
	For the More Curious: Can I Retrieve the Reference Count of an Instance?

	Chapter 25 Equatable and Comparable
	Conforming to Equatable
	Conforming to Comparable
	Comparable’s Inheritance
	Bronze Challenge
	Gold Challenge
	Platinum Challenge
	For the More Curious: Custom Operators

	Part VI. Event-Driven Applications
	Chapter 26 Your First Cocoa Application
	Getting Started with VocalTextEdit
	Model-View-Controller
	Setting Up the View Controller
	Setting Up Views in Interface Builder
	Adding the Speak and Stop buttons
	Adding the text view
	Auto Layout

	Making Connections
	Setting target-action pairs for VocalTextEdit’s buttons
	Connecting the text view outlet

	Making VocalTextEdit… Vocal
	Saving and Loading Documents
	Type casting
	Saving documents
	Loading documents
	MVC cleanup

	Silver Challenge
	Gold Challenge

	Chapter 27 Your First iOS Application
	Getting Started with iTahDoodle
	Laying Out the User Interface
	Wiring up your interface

	Modeling a To-Do List
	Setting Up the UITableView
	Saving and Loading TodoList
	Saving TodoList
	Loading TodoList

	Bronze Challenge
	Silver Challenge
	Gold Challenge

	Chapter 28 Interoperability
	An Objective-C Project
	Creating a contacts app

	Adding Swift to an Objective-?C Project
	Adding contacts

	Adding an Objective-?C Class
	Silver Challenge
	Gold Challenge

	Chapter 29 Conclusion
	Where to Go from Here?
	Shameless Plugs
	An Invitation

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

